Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
^AMB = ^ANB = 900 ( góc nt chắn nửa đường tròn )
nên AN ; BM lần lượt là đường cao
mà AN giao BN = H
=> H là trực tâm => SH là đường cao thứ 3
Vậy SH vuông AB
là góc nội tiếp chắn nửa đường tròn ⇒ ⇒ AN ⊥ NB
là góc nội tiếp chắn nửa đường tròn ⇒ ⇒ AM ⊥ MB
ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.
⇒ A là trực tâm của ΔSHB.
⇒ AB ⊥ SH (đpcm)
Kiến thức áp dụng
+ Góc nội tiếp chắn nửa đường tròn là góc vuông.
+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.
là góc nội tiếp chắn nửa đường tròn ⇒ ⇒ AN ⊥ NB
là góc nội tiếp chắn nửa đường tròn ⇒ ⇒ AM ⊥ MB
ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.
⇒ A là trực tâm của ΔSHB.
⇒ AB ⊥ SH (đpcm)
BM ⊥ SA ( = vì là góc nội tiếp chắn nửa đường tròn).
Tương tự, có: AN ⊥ SB
Như vậy BM và AN là hai đường cao của tam giác SAB và H là trực tâm.
Suy ra SH ⊥ AB.
(Trong một tam giác ba đường cao đồng quy)
a ) Ta có : PA // BC => ^MPE = ^ECB = ^PBM vì PB là tiếp tuyến của (O)
=> \(\Delta MPE~\Delta MBP\left(g.g\right)\)
\(\Rightarrow\frac{MP}{MB}=\frac{ME}{MP}\Rightarrow MP^2=ME.MB\)
b ) .Ta có MA là tiếp tuyến của (O)
\(\Rightarrow\widehat{MAE}=\widehat{MBA}\Rightarrow\Delta MAE~\Delta MBA\left(g.g\right)\)
\(\Rightarrow\frac{MA}{MB}=\frac{ME}{MA}\Rightarrow MA^2=ME.MB\)
\(\Rightarrow MA^2=MP^2\Rightarrow MA=MP\Rightarrow M\) là trung điểm PA