K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

Xét (O) có 

^AMB = ^ANB = 900 ( góc nt chắn nửa đường tròn ) 

nên AN ; BM lần lượt là đường cao 

mà AN giao BN = H 

=> H là trực tâm => SH là đường cao thứ 3 

Vậy SH vuông AB 

1 tháng 3 2022

Bạn ơi vẽ hình sao v ?

 

20 tháng 2 2017

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

Kiến thức áp dụng

+ Góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.

6 tháng 11 2019

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

BM ⊥ SA ( = vì là góc nội tiếp chắn nửa đường tròn).

Tương tự, có: AN ⊥ SB

Như vậy BM và AN là hai đường cao của tam giác SAB và H là trực tâm.

Suy ra SH ⊥ AB.

(Trong một tam giác ba đường cao đồng quy)



27 tháng 11 2019

hi e lớp 6 k bt ạ

18 tháng 6 2019

Gợi ý: Chứng minh P là trực tâm tam giác SAB

5 tháng 4 2020

P M E B A O C

5 tháng 4 2020

a ) Ta có : PA // BC => ^MPE = ^ECB = ^PBM  vì PB là tiếp tuyến của (O)

=> \(\Delta MPE~\Delta MBP\left(g.g\right)\)

\(\Rightarrow\frac{MP}{MB}=\frac{ME}{MP}\Rightarrow MP^2=ME.MB\)

b ) .Ta có MA là tiếp tuyến của (O)

\(\Rightarrow\widehat{MAE}=\widehat{MBA}\Rightarrow\Delta MAE~\Delta MBA\left(g.g\right)\)

\(\Rightarrow\frac{MA}{MB}=\frac{ME}{MA}\Rightarrow MA^2=ME.MB\)

\(\Rightarrow MA^2=MP^2\Rightarrow MA=MP\Rightarrow M\) là trung điểm PA