K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

A B O M N K C H I D P

Gọi KC cắt đường tròn (O) lần thứ hai tại I, BK cắt AC tại D. Kẻ đường kính IP của đường tròn (O).

Ta thấy ^IKP chắn nửa đường tròn (O) nên KP vuông góc KI. Mà KN vuông góc KI nên K,N,P thẳng hàng

Dễ dàng chứng minh \(\Delta\)IMO = \(\Delta\)PNO (c.g.c) => ^OIM = ^OPN => IM // PN hay IM // KN

Do KN vuông góc CK nên MI cũng vuông góc CK => ^MIC = ^MAC = 900 => Tứ giác ACIM nội tiếp

Suy ra ^AMC = ^AIC = ^ABK => MC // BK. Khi đó, \(\Delta\)ADB có M là trung điểm AB, MC // BD (C thuộc AD)

=> C là trung điểm AD. Nếu ta gọi BC cắt KH tại S thì \(\frac{HS}{AC}=\frac{KS}{CD}\left(=\frac{BS}{BC}\right)\)(Hệ quả ĐL Thales)

Vậy thì S là trung điểm của KH. Nói cách khác, BC chia đôi KH (tại S) (đpcm).

18 tháng 4 2021

mình cũng bí câu giống bạn !

Không biết bạn đã có cách giải chưa, chỉ mình với 

1 tháng 10 2023

 a) Ta thấy OI//AH//BK \(\left(\perp CD\right)\).

 Xét hình thang ABKH (AH//BK), O là trung điểm AB. OI//AH \(\left(I\in HK\right)\) nên I là trung điểm HK.

 b) Hạ \(CP\perp AB\) tại P, \(DQ\perp AB\) tại Q. Khi đó IE//CP//DQ \(\left(\perp AB\right)\)

 Xét hình thang CDQP (CP//DQ) có I là trung điểm CD (hiển nhiên), IE//CP và \(E\in PQ\) nên IE là đường trung bình của hình thang CDQP \(\Rightarrow IE=\dfrac{CP+DQ}{2}\)

 Lại có \(S_{ACB}=\dfrac{1}{2}AB.CP\)\(S_{ADB}=\dfrac{1}{2}.AB.DQ\) 

 \(\Rightarrow S_{ACB}+S_{ADB}=AB.\dfrac{CP+DQ}{2}=AB.IE\) (đpcm)

 c) Ta có \(S_{AHKB}=\dfrac{AH+BK}{2}.HK=OI.HK\) 

 Do dây CD có độ dài không đổi nên khoảng cách từ O đến dây CD là OI cũng không đổi. Như vậy ta chỉ cần tìm vị trí của C để HK lớn nhất. 

 Thật vậy, dựng hình bình hành ABLH. Khi đó vì BK//AH nên \(L\in BK\). Đồng thời ta luôn có \(HK\le HL=AB\), suy ra \(S_{AHKB}\le OI.AB\).

 Dấu "=" xảy ra \(\Leftrightarrow HK=HL\)  \(\Leftrightarrow K\equiv L\) \(\Leftrightarrow\) AHKB là hình bình hành \(\Leftrightarrow\) HK//AB hay CD//AB \(\Rightarrow OI\perp AB\). Vậy C là điểm sao cho \(OI\perp AB\).

 (Nếu muốn tìm cụ thể vị trí của C, thì mình nói luôn nó là điểm C sao cho \(sđ\stackrel\frown{AC}=180^o-2arc\cos\left(\dfrac{CD}{AB}\right)\) nhé. Chứng minh cái này dễ, mình nhường lại cho bạn.)

1 tháng 10 2023

Chỗ vị trí C mình sửa lại là \(sđ\stackrel\frown{AC}=90^o-arc\sin\dfrac{CD}{AB}\) nhé.