Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ACB=1/2*sđ cung AB=90 độ
=>BC vuông góc AM
góc ADB=1/2*sđ cung AB=90 độ
=>BD vuông góc AN tại D
ΔABM vuông tại B có BC là đường cao
nên AC*AM=AB^2
ΔABN vuông tại B có BD là đường cao
nên AD*AN=AB^2
=>AC*AM=AD*AN
=>AC/AN=AD/AM
=>ΔACD đồng dạng với ΔANM
=>góc ACD=góc ANM
=>góc DCM+góc DNM=180 độ
=>DCMN nội tiếp
b: AC*AM=AB^2=(2R)^2=4R^2
AD*AN=AB^2=(2R)^2=4R^2
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
b: Xét ΔABF và ΔAEB có
góc ABF=góc AEB
góc BAF chung
=>ΔABF đồng dạng với ΔAEB
=>AB/AE=AF/AB
=>AB^2=AE*AF