K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đường tròn

7 tháng 12 2018

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

 

Vì hai đường tròn có một điểm chung là A và Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án nên hai đường tròn tiếp xúc trong

15 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi O’ là tâm của đường tròn đường kính OA.

Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.

b) +) Xét đường tròn (O’) có A, O, C là ba điểm cùng thuộc đường tròn và OA là đường kính nên tam giác AOC vuông tại C.

⇒ OC ⊥ AD

+) Xét đường tròn tâm (O) có A, D là hai điểm thuộc đường tròn nên OA = OD

⇒ ΔAOD cân tại O mà OC ⊥ AD

⇒ OC là đường trung tuyến của ΔAOD

⇒ C là trung điểm của AD

⇒ AC = CD

23 tháng 6 2017

Đường trònĐường tròn

25 tháng 4 2017

Hướng dẫn giải:

a) Gọi O' là tâm của đường tròn đường kính OA thì O'A=O'O.

Ta có OO'=OA-O'A hay d=R-r nên đường tròn (O) và đường tròn (O') tiếp xúc trong.

b) Tam giác CAO có cạnh OA là đường kính của đường tròn ngoại tiếp nên ΔCAO vuông tại C

⇒OC⊥AD

⇒CA=CD (đường kính vuông góc với một dây).

6 tháng 1 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi O’ là tâm của đường tròn đường kính OA.

Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.

20 tháng 12 2020

Hai đường tròn tiếp xúc trong

3 tháng 12 2018

giwps minh cái

3 tháng 12 2018

cho đường thẳng OO' và điểm A nằm giữa 2 điểm O và O' vẽ đường tròn tâm O bán kính OA và tâm O' bán kính O'A qua A vẽ đường thẳng cắt đường tròn O tại B và O' tại C. CMR: O và ' tiếp xúc nhau

20 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: R < OA < 3R ⇔ 2R – R < OA < 2R + R

Suy ra hai đường tròn (O ; R) và (A ; 2R) cắt nhau

23 tháng 10 2023

a: Gọi E là trung điểm của OA

=>E là tâm đường tròn đường kính OA

Xét (E) có

ΔOBA nội tiếp

OA là đường kính

Do đó: ΔOBA vuông tại B

=>AB vuông góc OB tại B

=>AB là tiếp tuyến của (O)

Xét (O) có

ΔOCA nội tiếp

OA là đường kính

Do đó: ΔOCA vuông tại C

=>AC vuông góc với CO tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>BC vuông góc CK tại C

Xét (E) có

ΔBCI nội tiếp

BI là đường kính

Do đó: ΔBCI vuông tại C

=>BC vuông góc CI tại C

\(\widehat{KCI}=\widehat{KCB}+\widehat{ICB}\)

\(=90^0+90^0\)

\(=180^0\)

=>K,C,I thẳng hàng

Xét (B;BC) có

BC là bán kính

KI vuông góc với BC tại C

Do đó: KI là tiếp tuyến của (B;BC)