K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

Gọi HK là đường thẳng qua O và vuông góc với AB và CD, H ∈ AB; KCD

Ta có OK=3cm, OK=4cm

=> HK = 7cm hoặc HK = 1cm

23 tháng 6 2017

Liên hệ giữa dây và khoảng cách từ tâm tới dây

- Nếu O nằm ngoài dải song song tạo bởi AB và CD (h.104b) thì HK = OH - OK = 15 - 7=8 (cm)

2 tháng 9 2021

tại sao $HB^2=20^2?$

25 tháng 4 2017

Vẽ OH⊥AB, đường thẳng OH cắt CD tại K. Hãy chứng minh

OK⊥CD, KC=KD và AH=HB.

Tính được OH=15, suy ra OK=7.

Từ đó suy ra KD=24, suy ra CD=48.

NV
22 tháng 7 2021

undefined

NV
22 tháng 7 2021

Từ O kẻ đường thẳng vuông góc AB và CD, cắt AB và CD lần lượt tại H và K

\(\Rightarrow\) H là trung điểm AB và K là trung điểm CD

\(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=4\\CK=\dfrac{1}{2}CD=4,8\end{matrix}\right.\)

Áp dụng định lý Pitago cho tam giác vuông OAH (với chú ý \(OA=OC=R=5\))

\(OH=\sqrt{OA^2-AH^2}=3\left(cm\right)\)

Pitago tam giác OCK:

\(OK=\sqrt{OC^2-CK^2}=1,4\left(cm\right)\)

\(\Rightarrow HK=OH+OK=4,4\left(cm\right)\)

12 tháng 11 2021

a,

Đường thẳng qua O vuông góc AB,CD cắt AB,CD tại H,K

Suy ra H,K là trung điểm AB,CD (OAB,OCD cân tại O)

Do đó \(\left\{{}\begin{matrix}AH=\dfrac{1}{2}AB=3\\DK=\dfrac{1}{2}CD=4\end{matrix}\right.\)

Áp dụng PTG: \(\left\{{}\begin{matrix}OH=\sqrt{OA^2-AH^2}=4\\OK=\sqrt{OD^2-DK^2}=3\end{matrix}\right.\)

\(\Rightarrow HK=7\)

Vậy ...

12 tháng 11 2021

em nghe bạn nói có 2 TH

9 tháng 6 2019

Đáp án C

Qua O dựng đường thẳng vuông góc với AB và CD, cắt AB và CD lần lượt tại M và N.

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Áp dụng định lí Py tago vào tam giác vuông OND và OMB ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Khoảng cách hai dây AB và CD là: MN = OM + ON = 3 + 4 = 7 cm

 

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F ⇒ E là trung điểm AB, F là trung điểm CD

AE=12AB=4(cm) ; CF=12CD=3(cm)

Áp dụng định lý pytago cho tam giác vuông OAE

OE=√OA2−AE2=√R2−AE2=3(cm)

Pitago tam giác vuông OCF:

OF=√OC2−CF2=√R2−CF2=4(cm)

⇒EF=OE+OF=7(cm)

chúc bn học tốt !

14 tháng 5 2023

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$