Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có:(O) và (O') tiếp xúc ngoài tại A
=>A nằm giữa O và O'
=>B,O,A,O',C thẳng hàng
=>BA và CA lần lượt là đường kính của (O) và (O')
Kẻ tiếp tuyến chung AI của (O) và (O'), I\(\in\)DE
Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: ID=IA
IA=IE
Do đó: ID=IE
=>I là trung điểm của DE
Xét ΔADE có
AI là đường trung tuyến
AI=1/2DE
Do đó: ΔADE vuông tại A
=>\(\widehat{DAE}=90^0\)
b: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)MB tại D
Xét (O') có
ΔAEC nội tiếp
AC là đường kính
Do đó: ΔAEC vuông tại E
=>AE\(\perp\)MC tại E
Xét tứ giác MDAE có \(\widehat{MDA}=\widehat{MEA}=\widehat{DAE}=90^0\)
nên MDAE là hình chữ nhật
c: ta có: MDAE là hình chữ nhật
=>MA cắt DE tại trung điểm của mỗi đường
mà I là trung điểm của DE
nên I là trung điểm của MA
=>MA\(\perp\)BC tại A
=>MA là tiếp tuyến chung của (O) và (O')
a: TH1: A và CD nằm cùng một phía so với đường O'O
góc ABC=góc AEC=góc ICD
góc DBC=gsoc AED=góc IDC
=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC
=góc ICD+góc IDC+góc DIC=180 độ
=>BCID nội tiếp
TH2: A và CD nằm khác phía so với O'O
ABCE nội tiếp (O)
=>góc BCE+góc BAE=180 độ
=>góc BCE=góc BAF
Tương tự, ta được: góc BAF=góc BDI
=>góc BCE=góc BDI
=>góc BCI+góc BDI=180 độ
=>BCID nội tiếp
b: góc ICD=góc CEA=góc DCA
=>góc ICD=góc DCA
Chứng minh tương tự, ta được: góc IDC=góc CDA
Xét ΔICD và ΔACD có
góc ICD=góc DCA
CD chung
góc IDC=góc CDA
=>ΔICD=ΔACD
=>DI=DA và CI=CA
=>CD là trung trực của AI
c:
CD vuông góc AI
=>AI vuông góc MN
Gọi K là giao của AB và CD
Chứng minh được CK^2=KA*KB=KD^2
=>KC=KC
CD//MN
=>KC/AN=KD/AM=KB/AB
=>AN=AM
=>ΔIMN cân tại I
=>IA là phân giác của góc MIN