K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Đường tròn (C) có tâm I( -1;3) và bán kính.  R = 1 + 9 - 5 = 5

Do tiếp tuyến d song song với đường thẳng a nên d có dạng: x + 2y - m = 0

d là tiếp tuyến của (C) khi và chỉ khi:

Chọn A.

21 tháng 3 2017

Các phương trình song song với ∆: x+2y-5=0 có dạng d: x+2y+c=0

Từ đường tròn (C) ta có tâm I(-2;1) và bán kính R=3

Vì đường thẳng d là tiếp tuyến của đường tròn (C) nên ta có:

Vậy hai phương trình tiếp tuyến của đường tròn (C) là: x + 2 y + 3 5 = 0  và x + 2 y - 3 5 = 0 .

NV
21 tháng 1

1.

Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)

2.

\(\overrightarrow{MI}=\left(1;-2\right)\)

Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt

Phương trình:

\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)

NV
8 tháng 5 2019

Đường tròn có tâm \(I\left(-1;3\right)\) bán kính \(R=\sqrt{5}\)

Gọi d' là tiếp tuyến song song với d \(\Rightarrow\) pt d' có dạng: \(x+2y+c=0\)

Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)

\(\Rightarrow\frac{\left|-1+2.3+c\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\Leftrightarrow\left|c+5\right|=5\) \(\Rightarrow\left[{}\begin{matrix}c=0\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+2y=0\\x+2y-10=0\end{matrix}\right.\)

8 tháng 5 2019

Gọi phương trình tiếp tuyến là \(\Delta\)

Phương trình tiếp tuyến song song với d có dạng : \(x+2y+c=0\left(c\ne15\right)\)

Đường tròn (C) có bán kính R = \(\sqrt{5}\) và tâm I (-1;3)

d(I;\(\Delta\))=\(\frac{\left|-1+6+c\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|5+c\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}c=-5\\c=-10\end{matrix}\right.\)

Phương trình tiếp tuyến x+2y-5=0 hoặc x+2y-10=0

20 tháng 9 2019

Đáp án C

7 tháng 11 2019

Đáp án: B

(C): x 2  + y 2  - 2x + 6y + 8 = 0

⇔ (x - 1 ) 2  + (y + 3 ) 2  = 2 có I(1;-3), R = 2

Gọi d’ là tiếp tuyến của đường tròn (C) và song song với d

Vì d'//d ⇒ d': x + y + c = 0, (c ≠ 4)

d’ là tiếp tuyến của (C) nên d(I;d') = R

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

10 tháng 3 2018

Đáp án D

Do song song vớo ( d)  nên có phương trình dạng: x- 2y+ c= 0

∆ đi qua A( 2; -3) nên ta có

2- 2. (-3) + c= 0

Do đó: c= - 8.

Vậy đường thẳng cần tìm là x- 2y – 8 = 0

NV
26 tháng 3 2022

Giao điểm A của d1 và d2 là nghiệm:

\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)

\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:

\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)