Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện cần và đủ để đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) đi qua điểm cố định \(N\left(x_0;y_0\right)\)với mọi m là:
\(\left(m-2\right)x_0+\left(m-1\right)y_0=1\forall m\)
\(\Leftrightarrow mx_0-2x_0+my_0-y_0-1=0\forall m\)
\(\Leftrightarrow\left(x_0+y_0\right)m-\left(2x_0+y_0+1\right)=0\forall m\)
\(\Leftrightarrow\hept{\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\)
Vậy các đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) luôn đi qua điểm cố định N(-1; 1)
Giả sử điểm M(a,b) là điểm mà đường thẳng d luôn đi qua ta có
\(b=2a\left(m-1\right)-m+1\)
\(\Leftrightarrow m\left(2a-1\right)+1-2a-b=0\)
\(\Leftrightarrow\hept{\begin{cases}2a-1=0\\1-2a-b=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0,5\\b=0\end{cases}}}\)
Vậy đường thẳng luôn đi qua điểm cố định M(0,5; 0)
Cho x, y là các số dương thỏa mãn: xy + \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2008}\). Tính giá trị của biểu thức S=\(x\sqrt{1+y^2}=y\sqrt{1+x^2}\)
Lời giải:
a)
Gọi $(x_0, y_0)$ là điểm cố định mà $(d_1)$ với mọi $m$
Khi đó:
$mx_0+(m-2)y_0+m+2=0$ với mọi $m$
$\Leftrightarrow m(x_0+y_0+1)+(2-2y_0)=0$ với mọi $m$
\(\Rightarrow \left\{\begin{matrix} x_0+y_0+1=0\\ 2-2y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y_0=1\\ x_0=-2\end{matrix}\right.\)
Vậy điểm cố định mà $(d_1)$ luôn đi qua với mọi $m$ là $(-2,1)$
-----------------
Gọi điểm cố định mà $(d_2)$ luôn đi qua với mọi $m$ là $(x_0,y_0)$
Ta có:
$(2-m)x_0+my_0-m-2=0$ với mọi $m$
$\Leftrightarrow m(y_0-x_0-1)+(2x_0-2)=0$ với mọi $m$
\(\Rightarrow \left\{\begin{matrix} y_0-x_0-1=0\\ 2x_0-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=2\end{matrix}\right.\)
Vậy điểm cố định cần tìm là $(1,2)$
b) Gọi $I(a,b)$ là giao điểm của $(d_1); (d_2)$
Ta có:
$ma+(m-2)b+m+2=0(1)$
$(2-m)a+mb-m-2=0(2)$
Lấy $(1)+(2)\Rightarrow a+(m-1)b=0$
Lấy $(1)-(2)\Rightarrow (m-1)a-b+m+2=0$
Từ 2 PT trên ta dễ dàng suy ra $b=\frac{m+2}{(m-1)^2+1}; a=\frac{(m+2)(1-m)}{(m-1)^2+1}$
Bằng khai triển ta thấy:
\((\frac{(m+2)(1-m)}{(m-1)^2+1}+\frac{1}{2})^2+(\frac{m+2}{(m-1)^2+1}-\frac{3}{2})^2=\frac{5}{2}\) là hằng số
Do đó điểm $I$ luôn thuộc đường tròn tâm $(\frac{-1}{2}; \frac{3}{2})$ bán kính $\sqrt{\frac{5}{2}}$ là đường tròn cố định.
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
TH1: m = 0 => -2y = 2 => y = -1
Nên (d) đi qua điểm (0; -1) cố định
TH2: m # 0
Giả sử A(xo;yo) là điểm mà (d) luôn đi qua
\(\Leftrightarrow m\sqrt{3}x_0+2my_0-2y_0-m-2=0\\ \Leftrightarrow m\left(\sqrt{3}x_0+2y_0-1\right)-2y_0-2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x_0+2y_0-1=0\\2y_0+2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y_0=-1\\x=\sqrt{3}\end{matrix}\right.\)
Nên (d) đi qua điểm A(√3; -1) cố định
Vậy với mọi m, đường thẳng (d) luôn đi qua 1 điểm cố định