K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2023

a.

Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)

b.

\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)

Tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)

c.

M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)

26 tháng 3 2023

Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

a: Vì M nằm trên <> nen M(2t+2;t+3)

Theo đề, ta có: MA=5

\(\Leftrightarrow\sqrt{\left(0-2t-2\right)^2+\left(t+3-1\right)^2}=5\)

\(\Leftrightarrow4t^2+8t+4+t^2+4t+4=25\)

\(\Leftrightarrow5t^2+12t-17=0\)

=>(5t+17)(t-1)=0

=>t=1 hoặc t=-17/5

b:

Đặt (d) là <>

Vì <> có phương trìh tham số là x=2t+2 và y=t+3 nên (d) có vtcplà (2;2) và đi qua điểm A(2;3)

=>VTPT là (-1;1)

Phương trình tổng quát là:

-1(x-2)+1(y-3)=0

=>-x+2+y-3=0

=>-x+y-1=0

=>x-y+1=0

Tọa dộ điểm N là:

\(\left\{{}\begin{matrix}x-y=-1\\x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-1\end{matrix}\right.\)

28 tháng 7 2019

Đáp án B

Gọi H là hình chiếu của M trên ∆.

Ta có: H thuộc ∆ nên H( 1+ 3t ; -2t),  M H →   =   ( - 2 + 3 t ; - 3 - 2 t )

Đường thẳng có vectơ chỉ phương là: u → = ( 3 ; - 2 ) .

Ta có   M H → . u → = 0  nên 3( -2 + 3t)  -2( -3-2t) = 0

13t= 0 nên t= 0.

Khi đó; H( 1; 0)

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

 

a: Vì M nằm trên <> nen M(2t+2;t+3)

Theo đề, ta có: MA=5

\(\Leftrightarrow\sqrt{\left(0-2t-2\right)^2+\left(t+3-1\right)^2}=5\)

\(\Leftrightarrow4t^2+8t+4+t^2+4t+4=25\)

\(\Leftrightarrow5t^2+12t-17=0\)

=>(5t+17)(t-1)=0

=>t=1 hoặc t=-17/5

b:

Đặt (d) là <>

Vì <> có phương trìh tham số là x=2t+2 và y=t+3 nên (d) có vtcplà (2;2) và đi qua điểm A(2;3)

=>VTPT là (-1;1)

Phương trình tổng quát là:

-1(x-2)+1(y-3)=0

=>-x+2+y-3=0

=>-x+y-1=0

=>x-y+1=0

Tọa dộ điểm N là:

\(\left\{{}\begin{matrix}x-y=-1\\x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-1\end{matrix}\right.\)

 

7 tháng 4 2022

Mik đang bận nên chỉ có HD thôi ạ :

-Viết p/t đ/t d ; biểu diễn tọa độ P theo d

- Tính MN ; NP ; MP

- ADCT :  \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)  ( p = a + b + c / 2 ) 

GPT tìm tọa độ P 

NV
7 tháng 4 2022

\(\overrightarrow{NM}=\left(3;3\right)\Rightarrow MN=\sqrt{3^2+3^2}=3\sqrt{2}\) và đường thẳng MN nhận (1;-1) là 1 vtpt

Phương trình MN: 

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

Do P thuộc (d) nên tọa độ có dạng: \(\left(-8+2t;t\right)\)

\(\Rightarrow d\left(P;MN\right)=\dfrac{\left|-8+2t-t\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|t-8\right|}{\sqrt{2}}\)

\(S_{MNP}=\dfrac{1}{2}.d\left(P;MN\right).MN=18\)

\(\Leftrightarrow\dfrac{1}{2}.\dfrac{\left|t-8\right|}{\sqrt{2}}.3\sqrt{2}=18\)

\(\Rightarrow\left|t-8\right|=12\Rightarrow\left[{}\begin{matrix}t=20\\t=-4\end{matrix}\right.\) (loại \(t=20\) do P có tung độ âm)

\(\Rightarrow P\left(-16;-4\right)\Rightarrow2a-13b=20\)