K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Đáp án D

Đường thẳng đi qua 2 điểm A B có vectơ chỉ phương là  suy ra tọa độ vectơ pháp tuyến là ( 4;3) .

Suy ra phương trình AB:  4( x-3) + 3( y+ 1) = 0 hay 4x+ 3y -9=0

Do M nằm trên Ox nên M( x; 0)

Do d(M; AB)=1 nên

25 tháng 4 2020

Công thức ở dòng thứ 5 là j vậy

NV
25 tháng 4 2020

Công thức khoảng cách từ điểm đến đường thẳng

Đặng Ngọc Đăng Thy

9 tháng 10 2019

Đáp án D

Ta gọi  M(a ; 0)

Đường thẳng AB qua B(0 ; 3) và nhận  A B   → ( - 3   ;   4 )  làm VTCP và n → ( 4   ; 3 )  làm VTPT nên có pt :

4(x-0) + 3( y-3) =0 hay 4x + 3y -9= 0 và AB= 5

NV
22 tháng 7 2021

Gọi D là giao điểm MN và BC

Từ M kẻ ME vuông góc BC, từ N kẻ NF vuông góc BC

\(\widehat{B}=\widehat{C}=\widehat{NCF}\Rightarrow\Delta MBE=\Delta NCF\left(ch-gn\right)\)

\(\Rightarrow ME=NF\)

\(\Rightarrow\Delta MED=\Delta NFD\) 

\(\Rightarrow MD=ND\) hay D là trung điểm MN

\(\Rightarrow D\left(-1;3\right)\Rightarrow\overrightarrow{ED}=\left(2;4\right)=2\left(1;2\right)\)

Phương trình BC (hay ED) có dạng:

\(2\left(x+3\right)-1\left(y+1\right)=0\Leftrightarrow2x-y+5=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+4=0\\2x-y+5=0\end{matrix}\right.\) \(\Rightarrow B\left(-4;-3\right)\)

\(\Rightarrow\overrightarrow{BM}=\left(3;4\right)\)  \(\Rightarrow cosB=\dfrac{\left|3.1+4.2\right|}{\sqrt{3^2+4^2}.\sqrt{1^2+2^2}}=\dfrac{11\sqrt[]{5}}{25}\)

Do C thuộc BC nên tọa độ dạng: \(C\left(c;2c+5\right)\Rightarrow\overrightarrow{NC}=\left(c+1;2c+12\right)\)

\(cosC=cosB=\dfrac{11\sqrt{5}}{25}=\dfrac{\left|1.\left(c+1\right)+2\left(2c+12\right)\right|}{\sqrt{1^2+2^2}.\sqrt{\left(c+1\right)^2+\left(2c+12\right)^2}}\)

\(\Leftrightarrow c^2+10c-96=0\Rightarrow\left[{}\begin{matrix}c=6\Rightarrow C\left(6;17\right)\\c=-16\Rightarrow C\left(-16;-27\right)\end{matrix}\right.\)

(Loại \(C\left(-16;-27\right)\) do D nằm giữa B và C)

Viết phương trình AB (qua M và B), viết phương trình AC (qua N và C). Tọa độ A là giao AB và AC

NV
22 tháng 7 2021

undefined

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

NV
30 tháng 4 2021

Khoảng cách AM là nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của A lên \(\Delta\)

Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

M là giao điểm của d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+y-2=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).

b) Ta có: \(\overrightarrow {{n_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\). Phương trình đường thẳng a là:

\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)

c) Ta có: \(\overrightarrow {{u_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}}  = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:

\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)