K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Phương trình đường thẳng song song với ∆ có dạng – 4x + 3y + c = 0. Áp dụng công thức khoảng cách giữa hai đường thẳng song song ta có

Đáp án C

11 tháng 4 2019

Đáp án B

Đường tròn (C) có tâm I( 1; -3) và R= 2

 có phương trình  4x- 3y+ m= 0.

Vẽ

Vậy:

(d')//(d)

=>(d'): 4x-3y+c=0

(C): x^2-4x+4+y^2+6y+9-16=0

=>(x-2)^2+(y+3)^2=16

=>R=4; I(2;-3)

Theo đề, ta có: d(I;(d'))=4

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

=>|c+17|=4*5=20

=>c=3 hoặc c=-37

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta thấy hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia

Chọn điểm \(A\left( {0;4} \right) \in {d_2}\), suy ra \(d\left( {{d_1},{d_2}} \right) = d\left( {A,{d_1}} \right) = \frac{{\left| {4.0 - 3.4 + 2} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 2\)

Vậy khoảng cách giữa hai đường thẳng \({d_1}:4x - 3y + 2 = 0\) và \({d_2}:4x - 3y + 12 = 0\) là 2

(C): (x-1)^2+(y+2)^2=4

=>R=2; I(1;-2)

Vì (d)//Δ nên (d): 4x-3y+c=0

\(d\left(I;\left(d\right)\right)=2\)

=>\(\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=2\)

=>|c+4+6|=10

=>|c+10|=10

=>c=0 hoặc c=-20

=>4x-3y=0 hoặc 4x-3y-20=0

1: Gọi I(0,y) là tâm cần tìm

Theo đề, ta có: IA=IB

=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)

=>y^2-10y+25+9=y^2+14y+49+1

=>-10y+34=14y+50

=>-4y=16

=>y=-4

=>I(0;-4)

=>(x-0)^2+(y+4)^2=IA^2=90

2: Gọi (d1) là đường thẳng cần tìm

Vì (d1)//(d) nên (d1): 4x+3y+c=0

Theo đề, ta có: d(I;(d1))=3 căn 10

=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)

=>|c-12|=15căn 10

=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)

3 tháng 9 2017

(C): x 2 + y 2 − 4 x + 2 y − 15 = 0 và đường thẳng ∆: - 4x + 3y + 1 = 0.

 Đường tròn (C):  x 2 + y 2 − 4 x + 2 y − 15 = 0  có tâm I(2; -1) và bán kính R = 20 .

 

Khoảng cách d I ,   ∆ = − 4.2 + 3. − 1 + 1 5 = 2 < R  nên đường thẳng cắt đường tròn tại hai điểm phân biệt A, B cách nhau một khoảng là

A B = 2 R 2 − d I ,   ∆ 2 = 8 .

ĐÁP ÁN C