Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này là đề hình của 1 năm nào đó mà trong quyển ôn thi vào 10 môn toán có bn nhé! cũng không khó lắm đâu lời giải rất chi tiết hình như là đề 3 đấy (phàn đề thật)
a) Xét (O) có OB \(\perp\) CD
=> H là trung điểm của CD
=> HC=HD
Xét tứ giác ODBC có: H là trung điểm của OB,CD
=> tứ giác ADBC là hình bình hành
Mà: OC=OD(gt)
=> tứ giác ADBC là hình thoi
b)Vì tứ giác ADBC là hình thoi
=> OC=BC
Mà OC=OB(=R)
=> OC=OB=BC
=> ΔOBC là tam giác đều
=> góc BOC =60
c) Có: OB=BC(cmt)
Mà: OB=BM
=> OB=BC=BM
Xét ΔOCM có CB là đường trung tuyến
Mà: BC=OB=BM(cmt)
=> ΔOCM vuông tại C
=> góc ACM=90
=> MC là tiếp tuyến của (O)
Xét ΔOCM vuông tại C nên:
\(OM^2=OC^2+CM^2\) ( theo đl pytago)
=> \(MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)
=> \(MC=\sqrt{3}R\)
d) Vì ODBC là hình thoi (cmt)
=> OB là đường phân giác của góc COD
=> góc COH= góc DOH
Có: góc COH+ góc HOI =90
hay: góc DOH+ góc HOI = 90
Mà: góc HOI+ góc HIO =90
=> DOH = góc HIO
Xét ΔHOI và ΔHDO có:
góc OHI : góc chung
góc HIO = góc DOH(cmt)
=> ΔHOI ~ΔHDO
=> \(\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI\cdot HD=OH^2\)
CHứng minh tương tự ta cũng có:
\(HB\cdot HM=HC^2\)
Xét ΔOCH vuông tại H
=> \(OH^2+HC^2=OC^2\)
Nên: \(HI\cdot HD+HB\cdot HM=OH^2+HC^2=OC^2=R^2\)
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA
Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).