Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔANB vuông tại N và ΔANC vuông tại N có
AN chung
NB=NC
Do đó: ΔANB=ΔANC
b: Xét ΔNAB vuông tại N và ΔNMC vuông tại N có
NA=NM
NB=NC
Do đó: ΔNAB=ΔNMC
=>\(\widehat{NAB}=\widehat{NMC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MC
c: N là trung điểm của BC
=>BC=2*BN=12(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
=10+10+12
=32(cm)
a: Xét ΔANB và ΔANC có
AN chung
NB=NC
AB=AC
Do đó: ΔANB=ΔANC
a: AC=8cm
Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
hay CB=CD
Xét ΔCBD có
DK là đường trung tuyến
CA là đường trung tuyến
DK cắt CA tại M
Do đó: M là trọng tâm
=>AM=AC/2=8/3(cm)
b: Xét ΔCAD có
G là trung điểm của AC
GQ//AD
Do đó: Q là trung điểm của CD
Vì M là trọng tâm của ΔCDB nên B,M,Q thẳng hàng
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AC^2+AB^2\)
\(\Leftrightarrow AB^2=10^2-6^2=64\)
hay AB=8(cm)
mà N là trung điểm của AB(gt)
nên \(BN=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b) Xét ΔANC và ΔBND có
NA=NB(gt)
\(\widehat{ANC}=\widehat{BND}\)(hai góc đối đỉnh)
NC=ND(gt)
Do đó: ΔANC=ΔBND(c-g-c)
Suy ra: AC=BD(hai cạnh tương ứng) và \(\widehat{ACN}=\widehat{BDN}\)(hai góc tương ứng)
mà hai góc này là hai số ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)