Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có là đường kính của
Mà
nội tiếp đường tròn đường kính
b.Ta có nội tiếp
là phân giác
c.Vì là đường kính của
Xét có
Mà là trực tâm
Mà thẳng hàng
Xét có:
Chung
a) Tứ giác ACEI có: $\angle ACE+\angle EIA=90+90=180^o$ nên là tứ giác nội tiếp.
(Câu này dễ, bạn tự giải thích.)
b) Do AFEM nội tiếp nên $\angle EMB=\angle EFA=90-\angle FAB=90-\angle CAB=\angle EBM.$
Từ đó tam giác EBM cân tại E.
c) Tâm đường tròn ngoại tiếp (AEF) không chạy trên đường tròn cố định bạn nhé. Nó chạy trên đường trung trực đường thẳng AM. Ta chứng minh nó cố định. Mà A cố định nên chỉ cần chứng minh M cố định.
Từ câu b thu được I là trung điểm MB. Vậy M cách I một khoảng IB không đổi. Tức là M cố định.
Từ đó thu được đpcm.
Ps: Câu c không chắc.
a, Ta co :^BAC=90°(∆ABC vuong)
^BAC chan cungBC
^BDC=90°(do chan nua dtron duong kinh MC)
^BDC chan cung BC
=> tu giac ADCB noi tiep dtron
b, ta co: ^ABD =^ACD( tu giac ADCB noi tiep)(1)
Xet tu giac MECD co :
^MEC= 90°( do chan nua duong tron)
^MDC=90°(cmt)
^MEC+^MDC=90°+90°=180°
=>MECD noi tiep duong tron
=>^MEC=^ADC( cung chan MD)(2)
Tu(1),(2)=>^MEC=^ABC(dpcm)
Theo cach minh giai z ko bik dung hay sai va cau c, hinh nhu co chut van de nen minh ko giai dc mong ban thong cam
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)