K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOAC vuông tại A và ΔOBD vuông tại B có

OA=OB

góc AOC=góc BOD

Do đo: ΔOAC=ΔOBD

=>OA=OB; AC=BD

Xét tứ giác ADBC có

AC//BD

AC=BD

Do đó: ADBC là hình bình hành

=>AD=BC

Xét ΔAOC vuông tại A và ΔBOD vuông tại B có 

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

Do đó: ΔAOC=ΔBOD

Suy ra: AC=BD

Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

a: Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

b: Ta có: ACBD là hình bình hành

nên AD//BC

c:

Ta có: CE+EB=CB

FD+AF=AD

mà CB=AD

và CE=FD

nên EB=AF

Xét tứ giác EBFA có 

EB//AF

EB=AF

Do đó: EBFA là hình bình hành

Suy ra:EF và BA cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AB

nên O là trung điểm của FE

7 tháng 4 2020

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

7 tháng 4 2020

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4 

12 tháng 3 2020

x C A O B K y D

Gọi K là giao điểm của CO và BD

Xét \(\Delta\)AOC và \(\Delta\)BOK có :

AO = BO(gt)

\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)

\(\widehat{O}\)chung

=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)

=> OC = OK(hai cạnh tương ứng)

     AC = BK(hai cạnh tương ứng)

Xét \(\Delta\)COD và \(\Delta\)KOD có :

CO = KO(gt)

\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)

OD cạnh chung

=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)

=> CD = KD(hai cạnh tương ứng)

Do đó : CD = DB + BK = DB + AC