K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Kẻ tiếp tuyến MN chung của haid dường tròn

Xét (O) có

NE,NM là tiếp tuyến

=>NE=NM

Xét (I) có NF,NM là tiếp tuyến

=>NF=NM=NE

=>ΔEMF vuông tại M

Xét ΔEMF vuông tại M và ΔAKB vuông tại K có

góc MEF=góc KAB

=>ΔEMF đồng dạng với ΔAKB

b: góc KEM=góc KFM=góc EMF=90 độ

=>KEMF là hcn

23 tháng 5 2020

56/21

1 tháng 11 2018

giúp em với ạ? hiccc :<

Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại Fa.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)b. Cho AB = 4cm, xác...
Đọc tiếp

Bài toán:. Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F

a.Chứng minh tứ giác MECF là hình chữ nhật và È là tiếp tuyến chung của (I) và (K)

b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.

c. Khi C khác O , đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM  cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN

d. Chứng minh 3 điểm: N, E, F thẳng hàng

Dùng kiến thức kì 1 ko dùng nội tiếp ai giúp em



 

0
 Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại Fa.Chứng minh tứ giác MECF là hình chữ nhật và EF là tiếp tuyến chung của (I) và (K)b. Cho AB = 4cm, xác định vị...
Đọc tiếp

 Cho đường tròn tâm O, đường kính AB và một điểm C di động trên đoạn AB. Vẽ các đường tròn tâm I đường kính AC và đường tròn tâm K đường kính BC. Tia Cx vuông góc với AB tại C, cắt (O) tại M. Đoạn thẳng MA cắt đường tròn (I) tại E và đoạn thẳng MB cắt đường tròn (K) tại F

a.Chứng minh tứ giác MECF là hình chữ nhật và EF là tiếp tuyến chung của (I) và (K)

b. Cho AB = 4cm, xác định vị trí điểm C trên AB để diện tích tứ giác IFEK là lớn nhất.

c. Khi C khác O , đường tròn ngoại tiếp hình chữ nhật MECF cắt đường trong (O) tại P (khác M), đường thẳng PM cắt đường thẳng AB tại N. Chứng minh tam giác MPF đồng dạng với tam giác MBN

d. Chứng minh 3 điểm: N, E, F thẳng hàng

                                                             CÁC BẠN GIÚP MÌNH VỚI! MÌNH ĐANG CẦN GẤP Ạ!

6
7 tháng 12 2017
Các bạn giúp mình các ạ!!
20 tháng 12 2017

A B O C I K M E F P N

a) Ta thấy MEC và MFC là các tam giác vuông chung cạnh huyền MC nên MECF nội tiếp đường tròn đường kính MC.

Dễ thấy MECF là hình chữ nhật (Tứ giác có 3 góc vuông) nên \(\widehat{CEF}=\widehat{ECM}\)

Lại có \(\widehat{IEC}=\widehat{ICE}\Rightarrow\widehat{IEF}=\widehat{MCA}=90^o\)

Vậy EF là tiếp tuyến của (I).

Hoàn toàn tương tự FE là tiếp tuyến đường tròn (K). Vậy EF là tiếp tuyến chung của hai đường tròn.

b) MECF là hình chữ nhật nên EF = MC.

Do EI và FK cùng vuông góc với EF nên IEFK là hình thang vuông.

\(\Rightarrow S_{IEFK}=\frac{\left(EI+FK\right).EF}{2}=\frac{\left(IC+CK\right).MC}{2}=\frac{IK.MC}{2}\)

\(=\frac{\frac{AB}{2}.MC}{2}=MC\le MH\) với H là điểm chính giữa cung AB.

Vậy để diện tích IEFK lớn nhất thì C nằm chính giữa cung AB. Khi đó \(S_{IEFK}=2\left(cm^2\right)\)

c) Ta thấy \(\widehat{MPF}=\widehat{MCF}\)    (Hai góc nội tiếp cùng chắn cung MF) \(=\widehat{MBN}\)  (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn cung CF)

\(\Rightarrow\Delta MPF\sim\Delta MBN\left(g-g\right)\)

d) Do \(\Delta MPF\sim\Delta MBN\Rightarrow\widehat{MFP}=\widehat{MNB}\)

Mà \(\widehat{MFP}=\widehat{MEP}\Rightarrow\widehat{PNA}=\widehat{MEP}\)  hay NPEA là tứ giác nội tiếp.

Tương tự PFBN cũng là tứ giác nội tiếp.

Vậy thì ta có: \(\widehat{PNE}=\widehat{PAE}=\widehat{PBM}=\widehat{PNF}\)

Hay N, E, F thẳng hàng.