K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Với \(k\ne1\) và điểm O bất kì, ta có:

\(\overrightarrow{MA}=k\overrightarrow{MB}\) \(\Leftrightarrow\overrightarrow{OA}-\overrightarrow{OM}=k\left(\overrightarrow{OB}-\overrightarrow{OM}\right)\)

\(\Leftrightarrow\overrightarrow{OA}-k\overrightarrow{OB}=\left(1-k\right)\overrightarrow{OM}\)

\(\Leftrightarrow\overrightarrow{OM}=\frac{\overrightarrow{OA}-k\overrightarrow{OB}}{1-k}\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Cách 1:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\( \Leftrightarrow \overrightarrow {KA}  =  - 2\overrightarrow {KB} \)

Suy ra vecto \(\overrightarrow {KA} \) và vecto\(\;\overrightarrow {KB} \) cùng phương, ngược chiều và \(KA = 2.KB\)

\( \Rightarrow K,A,B\)thẳng hàng, K nằm giữa A và B thỏa mãn: \(KA = 2.KB\)

Cách 2:

Ta có: \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \).

\(\begin{array}{l} \Leftrightarrow \left( {\overrightarrow {KB}  + \overrightarrow {BA} } \right) + 2\overrightarrow {KB}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  + \overrightarrow {BA}  = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB}  = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {KB}  = \frac{1}{3}\overrightarrow {AB} \end{array}\)

Vậy K thuộc đoạn AB sao cho \(KB = \frac{1}{3}AB\).

b)

Với O bất kì, ta có:

\(\frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB}  = \frac{1}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KA} } \right) + \frac{2}{3}\left( {\overrightarrow {OK}  + \overrightarrow {KB} } \right) = \left( {\frac{1}{3}\overrightarrow {OK}  + \frac{2}{3}\overrightarrow {OK} } \right) + \left( {\frac{1}{3}\overrightarrow {KA}  + \frac{2}{3}\overrightarrow {KB} } \right) = \overrightarrow {OK}  + \frac{1}{3}\left( {\overrightarrow {KA}  + 2\overrightarrow {KB} } \right) = \overrightarrow {OK}\)

Vì \(\overrightarrow {KA}  + 2\overrightarrow {KB}  = \overrightarrow 0 \)

Vậy với mọi điểm O, ta có \(\overrightarrow {OK}  = \frac{1}{3}\overrightarrow {OA}  + \frac{2}{3}\overrightarrow {OB} .\)

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0  \Leftrightarrow \overrightarrow {MA}  + \left( {\overrightarrow {MA}  + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA}  + \overrightarrow {AC} } \right) = \overrightarrow 0 \)

\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MA}  + \overrightarrow {AB}  + 2\overrightarrow {AC}  = \overrightarrow 0 \\ \Leftrightarrow 4\overrightarrow {AM}  = \overrightarrow {AB}  + 2\overrightarrow {AC} \\ \Leftrightarrow \overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \end{array}\)

Trên cạnh AB, AC lấy điểm D, E sao cho \(AD = \frac{1}{4}AB;\;\,AE = \frac{1}{2}AC\)

 

Khi đó \(\overrightarrow {AM}  = \overrightarrow {AD}  + \overrightarrow {AE} \) hay M là đỉnh thứ tư của hình bình hành AEMD.

b) Chứng minh rằng với mọi điểm O, ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OM} \)

Với mọi điểm O, ta có: \(\left\{ \begin{array}{l}\overrightarrow {OA}  = \overrightarrow {OM}  + \overrightarrow {MA} ;\;\\\overrightarrow {OB}  = \overrightarrow {OM}  + \overrightarrow {MB} ;\;\,\\\overrightarrow {OC}  = \overrightarrow {OM}  + \overrightarrow {MC} \end{array} \right.\)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = \left( {\overrightarrow {OM}  + \overrightarrow {MA} } \right) + \left( {\overrightarrow {OM}  + \overrightarrow {MB} } \right) + 2\left( {\overrightarrow {OM}  + \overrightarrow {MC} } \right)\\ = 4\overrightarrow {OM}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC} } \right) = 4\overrightarrow {OM}  + \overrightarrow 0  = 4\overrightarrow {OM} .\end{array}\)

Vậy với mọi điểm O, ta có \(\overrightarrow {OA}  + \overrightarrow {OB}  + 2\overrightarrow {OC}  = 4\overrightarrow {OM} \).

24 tháng 9 2023

Tham khảo cách 2 câu a: 

 

Cách 2:

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {MC}  + \overrightarrow {CA} } \right) + \left( {\overrightarrow {MC}  + \overrightarrow {CB} } \right) + 2\overrightarrow {MC}  = \overrightarrow 0 \)

\(\begin{array}{l} \Leftrightarrow 4\overrightarrow {MC}  + \overrightarrow {CA}  + \overrightarrow {CB}  = \overrightarrow 0 \\ \Leftrightarrow 4.\overrightarrow {CM}  = \overrightarrow {CA}  + \overrightarrow {CB} \end{array}\)

Gọi D là đỉnh thứ tư của hình bình hành ACBD.

Khi đó: \(\overrightarrow {CD}  = \overrightarrow {CA}  + \overrightarrow {CB} \)\( \Rightarrow 4.\overrightarrow {CM}  = \overrightarrow {CD} \)

\( \Leftrightarrow \overrightarrow {CM}  = \frac{1}{4}\overrightarrow {CD}  \Leftrightarrow \overrightarrow {CM}  = \frac{1}{2}\overrightarrow {CO} \)

 

Với O là tâm hình bình hành ACBD, cũng là trung điểm đoạn AB.

 

Vậy M là trung điểm của trung tuyến kẻ từ C của tam giác ABC.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {OA}  + 3\overrightarrow {OB}  = \overrightarrow 0 \)

\(\begin{array}{l}
\overrightarrow {OA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + \overrightarrow {BA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + 3\overrightarrow {OB} = - \overrightarrow {BA} \\
\Leftrightarrow 4\overrightarrow {OB} = \overrightarrow {AB} \\
\Leftrightarrow \overrightarrow {OB} = \frac{1}{4}\overrightarrow {AB}
\end{array}\)

Vậy O thuộc đoạn AB sao cho \(OB = \frac{1}{4}AB\)

 

b) Ta có: 

\(\begin{array}{l}
\overrightarrow {MA} + 3\overrightarrow {MB} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right) + 3\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\\
= \left( {\overrightarrow {MO} + 3\overrightarrow {MO} } \right) + \left( {\overrightarrow {OA} + 3\overrightarrow {OB} } \right)\\
= 4\overrightarrow {MO} + \overrightarrow 0 = 4\overrightarrow {MO} . (đpcm)
\end{array}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow 0  \Leftrightarrow  - \overrightarrow {OA}  = \overrightarrow {OB} \)

\(\Rightarrow {\overrightarrow {MO} ^2} - {\overrightarrow {OA} ^2} = \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  - \overrightarrow {OA} } \right) \\= \left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right)\left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) = \overrightarrow {MA} .\overrightarrow {MB} \) (đpcm)

Ta có :

\(\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{OB}=\overrightarrow{MO}-\overrightarrow{MB}\)

\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{OB}=\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{OC}=\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AO}=\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{BO}=\overrightarrow{BO}\) ( đpcm )

2 tháng 8 2019

DƯƠNG PHAN KHÁNH DƯƠNG bác lớp mấy vậy ạ .-.