Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là giao điểm của IC và MN; E là giao điểm của IA và PN; F là giao điểm của IB và PM.
Ta có: Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.
Xét tam giác vuông INC và tam giác vuông IMC:
IC chung;
IN = IM.
Vậy \(\Delta INC = \Delta IMC\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {MIC} = \widehat {NIC}\)( 2 góc tương ứng).
Tương tự: \(\Delta IPA = \Delta INA\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIA} = \widehat {NIA}\)( 2 góc tương ứng).
\(\Delta IPB = \Delta IMB\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIB} = \widehat {MIB}\)( 2 góc tương ứng).
Xét hai tam giác IDN và IDM có:
ID chung;
\(\widehat {NID} = \widehat {MID}\);
IN = IM.
Vậy \(\Delta IDN = \Delta IDM\)(c.g.c)
\(\Rightarrow DN = DM\) ( 2 cạnh tương ứng);
\(\widehat {IDN} = \widehat {IDM}\) ( 2 góc tương ứng)
Mà \(\widehat {IDN} + \widehat {IDM}=180^0\) ( 2 góc kề bù)
\(\Rightarrow \widehat {IDN} = \widehat {IDM}= 180^0:2=90^0\).
Suy ra: IC là đường trung trực của cạnh MN.
Tương tự ta có:
IA là đường trung trực của cạnh PN; IB là đường trung trực của cạnh PM.
\(\left\{{}\begin{matrix}AC=BC\\AN=NB\\CN\text{ chung}\end{matrix}\right.\Rightarrow\Delta ACN=\Delta BCN\left(c.c.c\right)\\ \Rightarrow\widehat{ANC}=\widehat{BNC}\\ \text{Kết hợp với }AN=NB;NI\text{ chung}\\ \Rightarrow\Delta AIN=\Delta BIN\left(c.g.c\right)\\ \Rightarrow AI=BI\left(1\right)\)
Cmtt \(\Rightarrow\Delta ABM=\Delta CBM\left(c.c.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{CMB}\\ \Rightarrow\Delta AIM=\Delta CIM\\ \Rightarrow AI=CI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AI=BI=CI\)
I thuộc AB
=> M,n là trung điểm 2 đoạn bị cặt này bằng một nửa Ab
MN bằng:
70:2=35(mm)
Đáp số: 35 mm