Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD).
Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC.
MH=NI( dt ANC=AMC và chung đáy AC).
S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI).
S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB)
suy ra S(FMC)=1/3S(NBC)=1/3× 150
=50.S(AFM)
=S(ABC)-S(FMC)-S(ABM)
=300-50-150=100
S(BMN)=1/4S(ABN)
Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN.
Suy ra: MK=1/4AG(▲ BMN=1/4▲ABN và chung đáy NB).
S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD). Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC. MH=NI( dt ANC=AMC và chung đáy AC). S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI). S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB) suy ra S(FMC)=1/3S(NBC)=1/3× 150 =50.S(AFM) =S(ABC)-S(FMC)-S(ABM) =300-50-150=100 S(BMN)=1/4S(ABN) Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN. Suy ra: MK=1/4AG( tam giác BMN=1/4tam giác ABN và chung đáy NB). S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
a) ta thấy tỉ số diện tích tam giác ANB/ABC=1/3
tỉ số diện tích tam giác AMN/ANB=1/3 ( có chung chiều cao hạ từ N)
diện tích tam giác AMN là:
b) C với D như hình vẽ
ta thấy diện tích hai tam giác NDE bằng diện tích tam giác NDC ( có chung chiều cao và đáy )
từ đó suy ra:
vậy AND/NDE=1/2