Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )Xét ΔAOC và ΔBOD ,có:
BD = AC (gt)
BO = OA ( O là trung điểm của AB)
Góc xAB = ABy ( gt )
\(\Rightarrow\) ΔAOC = ΔBOD( c-g-c)
=> OC = OD ( 2 cạnh tương ứng )
Xét ΔAOE và ΔBOF,có:
Góc EAO = góc OBF(gt)
OA = OB (gt)
AE = BF ( gt)
=> ΔAOE = ΔBOF(c - g -c)
=> OE = OF ( 2 cạnh tương ứng )
b) Ta có :
Ax và By thuộc 2 nửa mặt phẳng đối nhau
mà : - E và C nằm trên tia Ax , D và F nằm trên tia By (1)
- EF và DC cắt nhau tại O (2)
Từ (1) và (2) => C , O , D thẳng hàng
c)Xét ΔEOD và ΔCOF,có:
Góc DOE = góc COF( 2 góc đối đỉnh)
OE = OF ( Theo câu a)
OC = OD ( Theo câu a)
=> ΔDOE = ΔCOF(c-g-c)
=> ED = CF ( 2 cạnh tương ứng )
c) Xét △NAM và △CAB có:
NAM = CAB (= 90o)
AM = AB (gt)
AN = AC (gt)
=> △NAM = △CAB (2cgv)
=> NMA = NBH (2 góc tương ứng)
Xét △NMA có: NMA + MNA + MAN = 180o (định lí tổng ba góc △)
Xét tiếp △BHN có: BHN + BNH + NBH = 180o (định lí tổng ba góc △)
=> NAM + MNA + MAN = BHN + BNH + NBH
Mà MNA = BNH (đối đỉnh), NMA = NBH (cmt)
=> NAM = BHN = 90o
=> BC \(\perp\)MN (đpcm)
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
a: Xét tứ giác BDCE có
I là trung điểm của BC
I là trung điểm của DE
Do đó: BCDE là hình bình hành
Suy ra: BD=CE và BD//CE
b: Ta có: BD//CE
nên góc ECB=góc DBI
mà góc DBI=góc ACB
nên góc ECB=góc ACB
hay CB là phân giác của góc ACE
a) vì BK dài 2cm vậy Ak dài là:
7-2=5(cm)
vì 5>4 suy ra AK>AI mà I thuộc AB suy ra I nằm giữa A và K
b)IK=AK-AI=5-4=1(cm)