K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

Đỉnh của đths là $(\frac{-b}{2a}, 4-\frac{b^2}{4a})=(1,-2)$

$\Rightarrow \frac{-b}{2a}=1; 4-\frac{b^2}{4a}=-2$

$\Rightarrow -b=2a; b^2=24a$

$\Rightarrow a=0$ hoặc $a=6$

Nếu $a=0$ thì $b=-2a=0$. Khi đó đths $y=4$ là đường thẳng song song với trục hoành, không có đỉnh I(1,-2)$

Nếu $a=6$ thì $b=-2a=-12$. Khi đó: $a+3b=6+3(-12)=-30$

30 tháng 10 2023

(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)

=>c=3;a=2;b=-4

=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)

=>Chọn C

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

11 tháng 11 2016

Đặt (P) : y = ax2

(P') : y = ax2+bx+c

Ta có : (P') : \(y=ax^2+bx+c=a\left(x^2+\frac{2.x.b}{2a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}\right)+c\)

\(=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\)

Đặt \(p=\frac{b}{2a}\) , \(q=-\frac{b^2-4ac}{4a}\) thì khi đó

\(\left(P'\right):y=a\left(x+p\right)^2+q\)

Điều này có nghĩa là ta tịnh tiến (P) sang phải p đơn vị , tịnh tiến lên trên q đơn vị thì được (P') => (P') thực chất là "phép tịnh tiến" của (P)

Từ đó bạn rút ra được điều phải chứng minh nhé!

Cách chứng minh trong SGK có viết rất rõ rồi , bạn tham khảo nhé !

 

11 tháng 11 2016

Mình quên mất ,bạn chú ý rằng các giá trị a,b,c chưa xác định do vậy ta chỉ cần nói (P') là phép tịnh tiến của (P) thôi nhé, còn trái phải lên xuống chưa rõ ^^

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

AH
Akai Haruma
Giáo viên
18 tháng 8 2019

Lời giải:

Để hàm số có GTLN thì $a< 0$

Hàm số đạt giá trị lớn nhất tại \(x=\frac{-b}{2a}=1\Leftrightarrow -b=2a(1)\)

Hàm số đạt giá trị cực đại (giá trị lớn nhất) là \(f(1)=a+b+c=a^2+4(2)\)

ĐT hàm số đi qua điểm $(3,1)\Rightarrow 1=9a+3b+c(3)$

Từ \((1);(2);(3)\Rightarrow \left\{\begin{matrix} b=-2a\\ a+b+c=a^2+4\\ 9a+3b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b=-2a\\ a+(-2a)+c=a^2+4\\ 9a+3(-2a)+c=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=-2a\\ c=a^2+a+4\\ c=1-3a\end{matrix}\right.\)

\( \Rightarrow \left\{\begin{matrix} a=-1\\ b=2\\ c=4\end{matrix}\right.\) hoặc \( \left\{\begin{matrix} a=-3\\ b=6\\ c=10\end{matrix}\right.\)

NV
24 tháng 10 2020

Chắc phải có điều kiện \(a\ne0\)

\(\left\{{}\begin{matrix}\frac{4a.\left(-1\right)-b^2}{4a}=\frac{3}{4}\\64a+8b-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4a-b^2=3a\\64a+8b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2=-7a\\a=-\frac{1}{8}b\end{matrix}\right.\) \(\Rightarrow b^2=\frac{7}{8}b\Rightarrow b=\frac{7}{8}\Rightarrow a=-\frac{7}{64}\)

Vậy hàm số có pt: \(y=-\frac{7}{64}x^2+\frac{7}{8}x-1\)