K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Chọn B

+ Đồ thị hàm số  y = | x 3 - 6 x 2 + 9 x - 2 |  có được bằng cách biến đổi đồ thị (C) hàm số  y = x 3 - 6 x 2 + 9 x - 2  

Giữ nguyên phần đồ thị (C) nằm trên trục hoành.

Lấy đồi xứng phần đồ thị của (C) phần dưới trục hoành qua trục hoành.

Xóa phần đồ thị còn lại (C) phía dưới trục hoành.

+ Số nghiệm của phương trình  | x 3 - 6 x 2 + 9 x - 2 | = m  là số giao điểm của đồ thị hàm số

y = | x 3 - 6 x 2 + 9 x - 2 |  và đồ thị hàm số y=m. Để phương trình có 6 nghiệm phân biệt thì điều kiện cần và đủ là 0<m<2.

12 tháng 4 2018

Đáp án  C

Các khẳng định đúng là I, III, IV.

5 tháng 12 2017

25 tháng 1 2018

Chọn đáp án B

17 tháng 2 2018

14 tháng 1 2018

Chọn D.

Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.

Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5

11 tháng 5 2017

Chọn đáp án A.

18 tháng 7 2019

29 tháng 10 2017

15 tháng 11 2018

Đặt t = t ( x ) = 2 x + 2 - x  với x ∈ [ - 1 ; 2 ]  

Hàm t=t(x) liên tục trên [-1;2] và

t ' ( x ) = 2 x ln 2 - 2 - x ln 2 , t ' ( x ) = 0 ⇔ x = 0

Bảng biến thiên

Vậy x ∈ [ - 1 ; 2 ] ⇒ t ∈ 2 ; 17 4  

Với mỗi t ∈ ( 2 ; 5 2 ]  có 2 giá trị của x thỏa mãn t = 2 x + 2 - x  

Với  mỗi t ∈ 2 ∪ 5 2 ; 17 4  có duy nhất 1 giá trị x thỏa mãn.

Xét phương trình f(t)=m với t ∈ 2 ; 17 4  

Từ đồ thị, phương trình f ( 2 x + 2 - x ) = m  có số nghiệm nhiều nhất khi và chỉ khi phương trình f(t)=m có 2 nghiệm t 1 , t 2 , trong đó có  t 1 ∈ ( 2 ; 5 2 ] ,   t 2 ∈ ( 5 2 ; 17 4 ]

Khi đó, phương trình  có nhiều nhất 3 nghiệm phân biệt thuộc đoạn [-1;2]

Chọn đáp án B.