K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

            loading...

Gọi J là giao điểm của BP và KE; Xét \(\Delta\)BSJ có:

PE // BS; PE = \(\dfrac{1}{2}\) BS 

⇒ PF là đường trung bình của \(\Delta\)BSJ (vì đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy)

⇒ PJ = PB;  EJ = ES (1)

Xét \(\Delta\)ABJ có: AF = FB (gt); PJ = PB  theo (1)

⇒  PF là đường trung bình của \(\Delta\) ABJ (vì đường trung bình của tam giác đi qua trung điểm hai cạnh của tam giác và song song với cạnh còn lại)

 ⇒ PF// AJ  (2) 

Xét tứ giác ASCJ ta có: E là giao điểm hai đường chéo

     AE = EC (gt)

    EJ = ES ( theo (1)

⇒ Tứ giác ASCJ là hình bình hành vì tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành.

⇒ CS // CJ (3)

Kết hợp (2) và(3) ta có:

     CS // PF ( vì trong cùng một mặt phẳng hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau.)

  Kết luận: nếu BS = 2EP thì  CS // PF điều phải chứng minh

 

 

 

         

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

20 tháng 7 2017
  1. 22222222​​
  2. 2
  3. 3
  4. 3
  5. 3
  6. 3
  7. 3
  8. 3
  9. 3
  10. 3
30 tháng 12 2021

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

a: Xét tứ giác AEMF có

AE//MF

AF//ME

Do đó: AEMF là hình bình hành

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

b: Xét ΔABC có

E là trung điểm của BA

EM//AC

Do đó: M là trung điểm của BC

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét ΔABC có

E,F lần lượt là trung điểm của AB,AC

=>EF là đường trung bình

=>EF//BC

=>EF//MH

ΔHAC vuông tại H

mà HF là đường trung tuyến

nên \(HF=AF\)

mà AF=ME(AEMF là hình chữ nhật)

nên ME=FH

Xét tứ giác MHEF có MH//EF

nên MHEFlà hình thang

mà ME=FH

nên MHEF là hình thang cân

13 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi Q là giao điểm của PF và AK ,I là giao điểm của PE và CL

Trong △ FPE ta có: PE//AK hay QM //PE

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta-lét) (1)

Trong  △ ALO ta có:PF //CL hay FQ //LO

Suy ra:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta-lét) (2)

Trong  △ ALC ta có: PF // CL

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta-lét) (3)

Từ (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì LO = 1/3 CL (O giao điểm của hai đường trung tuyến) nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (4)

Từ (1) và (4) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ FM = 1/3 FE

Trong  △ EPF ta có:PF // CL hay NI // PF

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta –lét) (5)

Trong  △ CKO ta có: EI // OK

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta –lét) (6)

Trong CKA ta có:PE // AK

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí ta –lét) (7)

Từ (6) và (7) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì OK = 1/3 AK (O là giao điểm của hai đường trung tuyến) nên Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (8)

Từ (5) và (8) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒EN = 1/3 EF

Ta có: MN = EF - (EN + FM) = EF - (1/3 EF + 1/3 EF) = 1/3 EF

Vậy EN = MN = NF