K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

Ai biết làm ko

 

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi

31 tháng 1 2018

Em tham khảo tại đây nhé.

Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath

5 tháng 8 2019

9 tháng 8 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Phạm Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath

9 tháng 8 2018

a) Do AMC và BMD là các tam giác đều nên \(\widehat{AMC}=\widehat{BMD}=60^o\)

\(\Rightarrow\widehat{AMD}=\widehat{CMB}\)

Xét tam giác AMD và tam giác CMB có:

AM = CM

MD = MB

\(\widehat{AMD}=\widehat{CMB}\)

\(\Rightarrow\Delta AMD=\Delta CMB\left(c-g-c\right)\)

\(\Rightarrow AD=BC\)

b) Do \(\Delta AMD=\Delta CMB\Rightarrow\widehat{EAM}=\widehat{FCM}\)

Xét tam giác AEM và tam giác CFM có:

\(\widehat{EAM}=\widehat{FCM}\)

AE = CF (Cùng bằng một nửa AD)

AM = CM

\(\Rightarrow\Delta AEM=\Delta CFM\left(c-g-c\right)\)

\(\Rightarrow ME=MF\)

Ta cũng có ngay \(\Delta EDM=\Delta FBM\left(c-g-c\right)\)

\(\Rightarrow\widehat{EMD}=\widehat{FMB}\)

\(\Rightarrow\widehat{EMF}=\widehat{EMD}+\widehat{DMF}=\widehat{FMB}+\widehat{DMF}=\widehat{DMB}=60^o\)

Xét tam giác MEF có ME = MF nên nó là tam giác cân. Lại có \(\widehat{EMF}=60^o\) nên tam giác MEF là tam giác đều.

9 tháng 8 2018

A B C M D F E

a) Dễ thấy: ^CMD = 1800 - (^AMC + ^BMD) = 600

Ta có: ^CMB = ^CMD + ^BMD = 1200; ^AMD = ^CMD + ^AMC = 1200

=> ^CMB = ^AMD. 

Xét \(\Delta\)MCB và \(\Delta\)MAD có: MC=MA; ^CMB = ^AMD; MB=MD => \(\Delta\)MCB = \(\Delta\)MAD (c.g.c)

=> BC = AD (2 cạnh tương ứng) (đpcm).

b)  BC=AD (cmt) => 1/2.BC=1/2.AD => CF=AE

\(\Delta\)MCB = \(\Delta\)MAD (cmt) => ^MCB = ^MAD hay ^MCF = ^MAE

Xét \(\Delta\)MFC và \(\Delta\)MEA có: CF=AE; ^MCF= ^MAE; MC=MA => \(\Delta\)MFC = \(\Delta\)MEA (c.g.c)

=> MF = ME (2 cạnh tương ứng) (1)

Đồng thời ^CMF = ^AME (2 góc tương ứng). Mà ^AME + ^CME = 600

=> ^CMF + ^CME = 600 => ^EMF = 600 (2)

Tù (1) và (2) => \(\Delta\)MEF đều (đpcm).