K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

c> ta có OM.EM=MC.MD vì = AM^2

=> tam giác đồng dạng 

=> góc E= goác ODM  

=> tứ giác OECD nt

=> góc DEO=DCO

mà DCO=ODC và ODC=CEM => .... tự nhìn nốt

13 tháng 4 2016

câu a thì thôi nhá

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

d: CK/AD=CB/AB

=>AD*CB=CK*AB=AB*DK

=>DK/CB=AD/AB

=>ΔBCA đồng dạng với ΔDKA

=>góc BAC=góc DAK

AM vuông góc OA

EF vuông góc OA

=>AM//EF
=>góc AEF=góc MAC=góc ADC

=>ΔADC đồng dạng với ΔAEF

=>CD/EF=AD/AE

góc EAH=góc KAD; góc AEH=góc ADK

=>ΔAEH đồng dạng với ΔADK

=>DK/EH=AD/AE

=>CD/EF=DK/EH

=>EH=FH

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)