Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O 1 2 1 2 1 1
a) (thay vô y như toán đại í )
t.g OBC có: O1^+B1^+C1^=180 độ => O1^=180 độ - B^1-C1^
t.g ABC có: A1^+B2^+B^1+C^2+C1^=180 độ
=> A1^+B^2+C^2=180 độ - B^1-C^1=O1^
=> BOC^=BAC^+ABO^+ACO^
b) B2^+C2^=90 độ - A1^:2
=> B2^+C^2= 90 độ - (180 độ - B1^ - B2^ - C1^ - C2^):2
=> B2^+C2^= 90 độ - 90 độ +(B1^+B2^+C2^+C1^):2
=> B2^+C2^=B2+(C1^+C2^):2 ( vì BO là tia p.g của ABC^)
=> C2^=(C1^+C2^):2 => CO là tia p/g của ACB^
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
Tam giác ABC có:
\(\widehat{BAC}+(\widehat{ABC}+\widehat{ ACB})=180^0\)
Tam giác MBC có:
\(\widehat{MBC}+(\widehat{MBC}+\widehat{MCB})=180^0\)
=> \(\widehat{BAC}+(\widehat{ABC}+\widehat{ ACB})=180^0 =\)\(\widehat{MBC}+(\widehat{MBC}+\widehat{MCB})=180^0\) (1)
Vì M nằm trong tam giác ABC nên tia BM nằm giữa hai tia BA và BC
=>\(\widehat{ABC}>\widehat{MBC}\)
Tương tự ta được : \(\widehat{ACB}=\widehat{ MCB}\)
=> \(\widehat{ABC}+\widehat{ACB}>\widehat{MBC}+\widehat{MCB}\) (2)
Từ (1) và (2) => \(\widehat{BMC}> \widehat{BAC}\)