K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2021

a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-6\right)^2=25\)

b.

\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(x-y+c=0\)

Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)

\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)

\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)

\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

22 tháng 5 2020

c) viết pttt của (C) và _|_ với △ ( sửa đề )