Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)
Xét tam giác vuông ABC, đường cao BD ta có:
\(AB^2=AD.AC\) (Hệ thức lượng)
b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.
Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)
Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Hay AB = AE.
Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)
Vậy AE là tiếp tuyến của đường tròn (O)
c) Xét tam giác vuông OBA đường cao BH, ta có:
\(OB^2=OH.OA\) (Hệ thức lượng)
\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)
Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)
d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)
Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)
Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.
Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)
ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu
a: Xét tứ giác ABCO có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABCO là tứ giác nội tiếp đường tròn đường kính OA
=>A,B,C,O cùng thuộc đường tròn đường kính OA
tâm là trung điểm của OA
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại M và M là trung điểm của BC
Xét ΔOCA vuông tại C có CM là đường cao
nên \(OM\cdot OA=OC^2\)
mà OC=OE(=R)
nên \(OE^2=OM\cdot OA\)
c: Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF
Xét ΔOGA vuông tại G và ΔOMH vuông tại M có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔOMH
=>\(\dfrac{OG}{OM}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OM=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại M và M là trung điểm của BC
Xét ΔOBA vuông tại B có BM là đường cao
nên \(OM\cdot OA=OB^2\)
c: Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF
Xét ΔOGA vuông tại G và ΔOMH vuông tại M có
góc GOA chung
Do đó: ΔOGA đồng dạng với ΔOMH
=>OG/OM=OA/OH
=>\(OM\cdot OA=OG\cdot OH\)
d: Ta có: \(OM\cdot OA=OG\cdot OH\)
\(OM\cdot OA=OB^2\)
OB=OE
Do đó: \(OE^2=OG\cdot OH\)
=>\(\dfrac{OE}{OG}=\dfrac{OH}{OE}\)
Xét ΔOEH và ΔOGE có
\(\dfrac{OE}{OG}=\dfrac{OH}{OE}\)
\(\widehat{EOH}\) chung
Do đó: ΔOEH đồng dạng với ΔOGE
=>\(\widehat{OEH}=\widehat{OGE}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)