K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Xét (O) có

MF,ME là tiếp tuyến

Do đó: MF=ME

=>M nằm trên đường trung trực của FE(1)

OE=OF

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra OM là đường trung trực của EF

=>OM\(\perp\)EF tại H và H là trung điểm của EF

b: ΔOMF vuông tại F

=>\(FO^2+FM^2=OM^2\)

=>\(FM^2=10^2-6^2=64\)

=>\(FM=\sqrt{64}=8\left(cm\right)\)

Xét ΔOFM vuông tại F có FH là đường cao

nên \(OH\cdot OM=OF^2\)

\(\Leftrightarrow OH\cdot10=6^2=36\)

=>OH=36/10=3,6(cm)

c: Xét tứ giác BHMA có

\(\widehat{BHM}+\widehat{BAM}=90^0+90^0=180^0\)

=>BHMA là tứ giác nội tiếp

=>B,H,M,A cùng thuộc một đường tròn