K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

(α) ⊥  a →

Δ ⊥  a →

⇒ Δ song song hoặc nằm trong (α).

Mà Δ và (α) cùng đi qua A

⇒ Δ ⊂ (α)

Δ cắt d ⇒ Δ cắt d tại M

⇒ Δ chính là đường thẳng AM.

Giải bài 7 trang 92 sgk Hình học 12 | Để học tốt Toán 12

 

3 tháng 3 2018

(α) vuông góc với giá của  a → ⇒ (α) nhận  a →  là 1 vtpt.

(α) đi qua A(-1; 2; -3)

⇒ (α): 6x – 2y – 3z + 1 = 0.

3 tháng 5 2018

Chọn D

Xét hàm số:

Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là

Vậy phương trình đường thẳng 

26 tháng 6 2018

3 tháng 11 2019

Chọn C

Gọi d là đường thẳng cần tìm.

Đường thẳng cần tìm qua A và nhận  là véc tơ chỉ phương nên có phương trình:

31 tháng 1 2017

Ta có:  a d →  = (2; −1; 4)

Xét điểm B(–3 + 2t; 1 – t; –1 + 4t) thì AB →  = (1 + 2t; 3 − t; −5 + 4t)

AB ⊥ d ⇔  AB → . a d →  = 0

⇔ 2(1 + 2t) − (3 − t) + 4(−5 + 4t) = 0 ⇔ t = 1

Suy ra  AB →  = (3; 2; −1)

Vậy phương trình của ∆ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

5 tháng 4 2016

Do  \(\Delta\) đi qua A và vuông góc với d nên  \(\Delta\) phải nằm trong mặt phẳng (P) đi qua A và vuông góc với d.

Mặt phẳng (P) nhận vecto \(\overrightarrow{u}=\left(2;-1;4\right)\) của d làm vecto pháp tuyến, đi qua A(-4;-2;4) có phương trình : \(2x-y+4z-10=0\)

Gọi M là giao điểm của d và (P) thì M(-3+2t;1-t;-1+4t) thuộc d và M thuộc  \(\Delta\)

Ta cũng có : \(M\in\left(P\right)\Leftrightarrow2\left(-3+2t\right)-\left(1-t\right)+4\left(-1+4t\right)-10=0\)                                 \(\Leftrightarrow21t-21=0\Leftrightarrow t=1\)Vậy \(M\left(-1;0;3\right)\)Khi đó \(\overrightarrow{MA}=\left(3;2;-1\right)\), đường thẳng  \(\Delta\)đi qua A và M có phương trình :\(\frac{x+4}{3}=\frac{y+2}{2}=\frac{z-4}{-1}\) 
3 tháng 5 2018

Chọn B.

21 tháng 10 2018

NV
27 tháng 2 2021

a. (P) vuông góc denta nên nhận (1;2;3) là 1 vtpt

Phương trình (P):

\(1\left(x-2\right)+2\left(y-1\right)+3\left(z-3\right)=0\)

\(\Leftrightarrow x+2y+3z-13=0\)

b. \(\overrightarrow{AB}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{n_{\left(P\right)}}\right]=\left(3;-2;-1\right)\)

Phương trình mp:

\(3\left(x-1\right)-2\left(y+1\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x-2y-z-3=0\)