K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

Thay tọa độ A vào (d) thỏa mãn \(\Rightarrow A\in d\Rightarrow d\left(A;d\right)=0\)

\(\Rightarrow d\left(K;d\right)=0\Rightarrow K\in d\)

\(\Rightarrow K\) là giao điểm của d và trục Ox

Tọa độ K là nghiệm: \(\left\{{}\begin{matrix}y=0\\2x-y-3=0\end{matrix}\right.\)

\(\Rightarrow K\left(\dfrac{3}{2};0\right)\)

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

Δ vuông góc với d:3x-y+7=0

=>Δ: x+3y+c=0

Thay x=1 và y=5 vào Δ, ta được:

\(c+1+3\cdot5=0\)

=>c+16=0

=>c=-16

=>Δ: x+3y-16=0

M thuộc Ox nên M(x;0)

\(d\left(M;\text{Δ}\right)=3\)

=>\(\dfrac{\left|x\cdot1+0\cdot3-16\right|}{\sqrt{1^2+3^2}}=3\)

=>\(\left|x-16\right|=3\sqrt{10}\)

=>\(\left[{}\begin{matrix}x-16=3\sqrt{10}\\x-16=-3\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16+3\sqrt{10}\\x=16-3\sqrt{10}\end{matrix}\right.\)

vậy: \(M\left(16+3\sqrt{10};0\right);M\left(16-3\sqrt{10};0\right)\)

17 tháng 12 2020

Đường thẳng (d) có dạng \(y=kx+m\)

\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)

\(\Rightarrow y=kx+2\left(d\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)

Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)

\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)

Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)

\(x-2y+3=0\left(d'\right)\)

\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)

\(\Leftrightarrow2k^2-9k+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)

P/s: Không biết đúng kh.

13 tháng 8 2018

Đáp án D

Do M thuộc d nên M( x; 2x+ 3)

Suy ra:

Do đó:

nhỏ nhất khi và chỉ khi: f(x) = 45x2+ 78x + 34  nhỏ nhất

NV
29 tháng 1

Đề kiểu gì mà cho điểm A nằm ngay trên đường thẳng d như vậy nhỉ?

Theo BĐT tam giác ta có:

\(MA+MB\ge AB\)

Dấu "=" xảy ra khi M, A, B thẳng hàng, hay M là giao điểm của AB và d

Nhưng do A nằm trên d nên giao điểm của AB và d chính là A

Vậy M trùng A, hay M có tọa độ \(M\left(3;4\right)\)

//Ko cần tính toán bất kì 1 bước nào hết, chỉ cần lý luận là có kết quả. Chắc người ra đề ko để ý đến chuyện điểm A bất ngờ nằm trên d.

8 tháng 4 2020

trl ; bạn kia đúng r

-

_

----------------