K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác CAOK co

góc CAO+góc CKO=180 độ

nên CAOK là tứ giác nội tiếp

b: Xét (O) có

CK,CA là tiếp tuyến

nên CK=CA và OC là phân giác của góc AOK(1)

Xét (O) có

DK,DB là tiếp tuyến

nên DK=DB và OD là phân giác của góc KOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

OK^2=KC*KD

=>AC*BD=R^2 ko đổi

c: Xét ΔOAK có OA=OK=AK

nên ΔOAK đều

=>gócc AOK=60 độ

=>góc KOB=120 độ

=>góc KDB=60 độ

mà DK=DB

nên ΔDKB đều

a: Xét tứ giác CAOM có

góc CAO+góc CMO=180 độ

nên CAOM là tứ giác nội tiếp

b: Xét (O) có

CA,CM là tiêp tuyến

nên CA=CM và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

CM*MD=OM^2

=>CA*BD=R^2

c: CA=CM

OA=OM

=>CO là trung trực của AM

=>CO vuông góc với AM

=>CO//BK

Xét ΔABK có

O là trung điểm của AB

OC//BK

Do đó: C là trung điểm của AK

NV
21 tháng 12 2022

c.

\(CM=AC\) (t/c 2 tiếp tuyến cắt nhau) (1)

\(\widehat{KMC}=\widehat{DMB}\) (đối đỉnh) 

Mà \(DM=DB\) (t/c 2 tiếp tuyến cắt nhau) \(\Rightarrow\Delta DMB\) cân tại D

\(\Rightarrow\widehat{DMB}=\widehat{DBM}\Rightarrow\widehat{KMC}=\widehat{DBM}\)

Lại có: \(\widehat{DBM}=\widehat{AKB}\) (cùng phụ \(\widehat{ABK}\)

\(\Rightarrow\widehat{KMC}=\widehat{AKB}\Rightarrow\Delta CKM\) cân tại C

\(\Rightarrow CK=CM\) (2)

(1);(2) \(\Rightarrow CK=CA\) hay C là trung điểm AK

d.

Qua A kẻ đường thẳng song song BM cắt BD kéo dài tại E

\(\Rightarrow AKBE\) là hbh (2 cặp cạnh đối song song)

\(\Rightarrow\) 2 đường chéo KE và AB cắt nhau tại trung điểm O của AB

Hay K, O, E thẳng hàng

Theo t/c 2 tiếp tuyến ta có \(OD\perp BM\) \(\Rightarrow OD\perp AE\)

Đồng thời \(AB\perp DE\) (gt)

\(\Rightarrow\) O là trực tâm tam giác ADE

\(\Rightarrow OE\perp AD\)

\(\Rightarrow OK\perp AD\)

NV
21 tháng 12 2022

loading...

25 tháng 2 2023

14 tháng 12 2022

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

CD=CM+MD

=>CD=CA+BD

c: AC*BD=MC*MD=OM^2=R^2 ko đổi

d: CM=CA

OM=OA

Do đó: CO là trung trực của AM

mà H nằm trên đường trung trực của AM

nên O,H,C thẳng hàng

21 tháng 12 2016

TIA BM CAT Ax TAI, N TIEP THEO TU LAM

12 tháng 9 2017

Sử dụng tính chất hai tiếp tuyến

a, Ta có: AC = CM; BD = DM => AC+BD=CD

b,  C O A ^ = C O M ^ ; D O M ^ = D O B ^

=>  C O D ^ = 90 0

c, AC.BD = MC.MD =  M O 2 = R 2

d, Gọi I là trung điểm của CD. Sử dụng tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông và đường trung bình trong hình thang để suy ra đpcm