K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

Đường tròn tâm \(I\left(2;\frac{1}{2}\right)\)

\(\Delta\) song song d nên pt \(\Delta\) có dạng: \(x+2y+c=0\) (\(c\ne20\))

Dây cung có độ dài lớn nhất là đường kính

\(\Rightarrow\) Để \(\Delta\) cắt (C) theo 1 dây cung có độ dài lớn nhất khi và chỉ khi \(\Delta\) qua I

\(\Rightarrow2+\frac{1}{2}.2+c=0\Rightarrow c=-3\)

Phương trình \(\Delta\): \(x+2y-3=0\)

NV
12 tháng 5 2019

\(\left(C\right)\) có tâm \(I\left(2;\frac{1}{2}\right)\)

Trong đường tròn, dây cung có độ dài lớn nhất khi và chỉ khi nó là đường kính \(\Rightarrow\Delta\) đi qua I

Do \(\Delta//d\) nên \(\Delta\) có 1 vtpt \(\overrightarrow{n_{\Delta}}=\left(1;2\right)\)

Phương trình \(\Delta\):

\(1\left(x-2\right)+2\left(y-\frac{1}{2}\right)=0\Leftrightarrow x+2y-3=0\)

NV
31 tháng 5 2020

Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{\left(-1\right)^2+2^2+4}=3\)

Áp dụng định lý Pitago:

\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{6}{2}\right)^2}=0\)

\(\Rightarrow d\) đi qua I

d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)

(C): x^2+y^2-4x+6y-12=0

=>O(2;-3)

R=căn 2^2+(-3)^2+12=5

Gọi đường cần tìm là (d'): x+y+c=0

Gọi A,B lần lượt là giao điểm của (d') và (C)

ΔOHB vuông tại H

\(d\left(O;AB\right)=\dfrac{\left|2+\left(-3\right)+c\right|}{\sqrt{2}}=HO\)

\(=\sqrt{OB^2-BH^2}=3\)

=>\(\left[{}\begin{matrix}c=3\sqrt{2}+1\\c=-3\sqrt{2}+1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+y-3\sqrt{2}+1=0\\x+y+3\sqrt{2}+1=0\end{matrix}\right.\)

NV
4 tháng 6 2020

Đường tròn tâm \(I\left(1;1\right)\) bán kính \(R=\sqrt{1^2+1^2-\left(-23\right)}=5\)

Thay tọa độ I vào d thỏa mãn \(\Rightarrow I\) thuộc d

\(\Rightarrow\) d cắt (C) theo dây cung đúng bằng đường kính

\(\Rightarrow\) Độ dài dây cung \(=2R=10\)

1 tháng 5 2020

9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)

\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)

\(\left(d\right):x-2y-3=0\)

10/ \(\overrightarrow{BC}=\left(-6;8\right)\)

PT đường cao AA' nhận vecto BC làm vtpt

\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)

\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)

\(AA'=-6x+8y+22=0\)

18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)

Để mình chứng minh lại:

Đường thẳng có dạng : y= ax+b

\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)

Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)

Vì khoảng cách từ O đến từng điểm là như nhau

\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)

NV
4 tháng 6 2020

Đường tròn tâm \(I\left(3;-2\right)\) bán kính \(R=5\)

Áp dụng định lý Pitago: \(d\left(I;AB\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=3\)

d' song song d nên pt có dạng: \(3x-4y+c=0\) (với \(c\ne-2\))

\(d\left(I;d'\right)=3\Leftrightarrow\frac{\left|3.3-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)

\(\Leftrightarrow\left|c+17\right|=15\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-32\end{matrix}\right.\)

Vậy pt d': \(3x-4y-32=0\)

b/ \(\Delta\) là tiếp tuyến (C) \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\frac{\left|3.3+4.\left(-2\right)+m\right|}{\sqrt{3^2+4^2}}=5\Leftrightarrow\left|m+1\right|=25\Rightarrow\left[{}\begin{matrix}m=24\\m=-26\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y+24=0\\3x+4y-26=0\end{matrix}\right.\)

c/ Thay tọa độ đường thẳng vào pt (C) được:

\(\left(3+2t\right)^2+\left(-2-t\right)^2-6\left(3+2t\right)+4\left(-2-t\right)-12=0\)

\(\Leftrightarrow5t^2-25=0\Rightarrow t=\pm\sqrt{5}\)

Tọa độ giao điểm: \(\left\{{}\begin{matrix}A\left(3+2\sqrt{5};-2-\sqrt{5}\right)\\B\left(3-2\sqrt{5};-2+\sqrt{5}\right)\end{matrix}\right.\)

4 tháng 6 2020

Thanks bn nhìu nha.

7 tháng 8 2019

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.