\(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\) với m bằng bao nhiêu t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2021

ĐKXĐ: \(x>2\)

\(x^2-2\left(m+1\right)x+6m-2=x-2\)

\(\Leftrightarrow x^2-\left(2m+3\right)x+6m=0\) (1)

Pt có nghiệm duy nhất khi và chỉ khi (1) có 2 nghiệm pb thỏa mãn:

\(x_1\le2< x_2\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\f\left(2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\-2+2m< 0\end{matrix}\right.\) \(\Rightarrow m\le1\)

10 tháng 1 2021

tại sao \(x_1\le2< x_2\Rightarrow f\left(2\right)< 0\) được ạ 

21 tháng 11 2019

\(\frac{x^2-2\left(m+1\right)x+6m-2}{x-2}=\sqrt{x-2}\)

Ta thấy phương trình luôn có nghiệm \(x=3\) m nên để phương trình có 1 nghiệm duy nhất ta suy ra:

\(\frac{x^2-2\left(m+1\right)x+6m-2}{3-2}=\sqrt{3-2}\)

\(\Rightarrow x^2-2\left(m+1\right)x+6m-2=1\)

\(\Rightarrow x^2-2\left(m+1\right)x+6m-3=0\)

\(\Rightarrow x^2-2x-3-2m\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)-2m\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+1-2m\right)=0\left(1\right)\)

\(\Rightarrow\left(1\right)\) có hai nghiệm:\(\left[{}\begin{matrix}x=3\\x=2m-1\end{matrix}\right.\)

\(\Rightarrow\left(1\right)\) có nghiệm kép \(=3\) hoặc \(\left(1\right)\) có nghiệm bé hơn \(2\)

\(\Rightarrow\left[{}\begin{matrix}2m-1=3\\2m-1< 2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=2\\m< \frac{3}{2}\end{matrix}\right.\)

Vậy.........................

26 tháng 1 2018

Bài 1 :

Đặt f(x) = \(\sqrt{x}-\sqrt{x-1}\) tập xác định [1;+)

Dễ thấy f(x) > 0

f(x) = \(\left(\sqrt{x}-1\right)-\sqrt{x-1}+1=\dfrac{x-1}{\sqrt{x}+1}-\sqrt{x-1}+1\)

= \(\sqrt{x-1}\left(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}-1\right)+1\le\sqrt{x-1}\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)+1=\dfrac{-\sqrt{x-1}}{\sqrt{x+1}}+1\le1\)

Và f(1) = 1

Vậy f(x) có tập giá trị là (0;1]

* Nếu m \(\ge1\) thì bpt vô nghiệm

* Nếu m < 1 thì bpt có nghiệm

Vậy tập hợp m thỏa mãn là (0;1)

(0;1)

7 tháng 2 2018

ei ~ atr ăn cắp ảnh nka , chưa xin phép eg , atr lấy ảnh eg từ khi nào vậy , khai mau

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn