Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
a: \(=\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-5}{13}-\dfrac{8}{13}\right)+\left(\dfrac{-18}{35}-\dfrac{17}{35}\right)\)
=1-1-1
=-1
b: \(=\dfrac{-3}{8}\left(\dfrac{1}{6}+\dfrac{5}{6}\right)+\dfrac{-5}{8}=\dfrac{-3}{8}-\dfrac{5}{8}=-1\)
c: \(=\dfrac{4}{4}\cdot\dfrac{5}{15}\cdot\dfrac{11}{11}=\dfrac{1}{3}\)
a)\(=\left(-\dfrac{5}{13}+\dfrac{-8}{13}\right)+\left(-\dfrac{18}{35}-\dfrac{17}{35}\right)+\left(\dfrac{3}{14}+\dfrac{14}{17}\right)=-1-1+1=-1\)
b)\(=\dfrac{-3}{8}.\left(\dfrac{1}{6}+\dfrac{5}{6}\right)-\dfrac{10}{16}=-\dfrac{3}{8}.1-\dfrac{10}{16}=-\dfrac{6}{16}-\dfrac{10}{16}=-\dfrac{16}{16}=-1\)
c)\(\dfrac{-4.5.11}{11.5.3.-4}=\dfrac{1}{3}\)
a) = 1/2 + 1/3 = 5/6
b) = 2/5 + 2/3 = 16/15
c) = 7/11 . ( 3/4 + 1/4 ) + 4/11
= 7/11 . 1 + 4/11
= 7/11 + 4/11
= 1
d) = ( 3/4 + 1/2 + 1/4 ) . 8/3
= 3/2 . 8/3
= 4
a, \(\begin{array}{l}A = \dfrac{{ - 3}}{{14}} + \dfrac{2}{{13}} + \dfrac{{ - 25}}{{14}} + \dfrac{{ - 15}}{{13}}\\A = \left( {\dfrac{{ - 3}}{{14}} + \dfrac{{ - 25}}{{14}}} \right) + \left( {\dfrac{2}{{13}} + \dfrac{{ - 15}}{{13}}} \right)\\A = \dfrac{{ - 3 + \left( { - 25} \right)}}{{14}} + \dfrac{{2 + \left( { - 15} \right)}}{{13}}\\A = \dfrac{{ - 28}}{{14}} + \dfrac{{ - 13}}{{13}}\\A = - 2 + (-1)\\A = - 3\end{array}\)
b,
Cách 1:
\(\begin{array}{l}B = \dfrac{5}{3}.\dfrac{7}{{25}} + \dfrac{5}{3}.\dfrac{{21}}{{25}} - \dfrac{5}{3}.\dfrac{7}{{25}}\\B = \left( {\dfrac{5}{3}.\dfrac{7}{{25}} - \dfrac{5}{3}.\dfrac{7}{{25}}} \right) + \dfrac{5}{3}.\dfrac{{21}}{{25}}\\B = 0 + \dfrac{5}{3}.\dfrac{{21}}{{25}}\\B = \dfrac{{5.21}}{{3.25}}\\B = \dfrac{7}{5}\end{array}\)
Cách 2:
\(B = \dfrac{5}{3}.\dfrac{7}{{25}} + \dfrac{5}{3}.\dfrac{{21}}{{25}} - \dfrac{5}{3}.\dfrac{7}{{25}}\\B = \dfrac{5}{3}.({\dfrac{7}{{25}} -\dfrac{7}{{25}} + \dfrac{{21}}{{25}}})\\B = \dfrac{5}{3}.\dfrac{{21}}{{25}}\\B = \dfrac{{5.21}}{{3.25}}\\B = \dfrac{7}{5}\)
\(a.\)
\(-\dfrac{2}{3}\cdot\dfrac{?}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{?}{4}=\dfrac{1}{2}:-\dfrac{2}{3}=\dfrac{1}{2}\cdot-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Leftrightarrow?=-3\)
\(b.\)
\(\dfrac{?}{3}\cdot\dfrac{5}{8}=-\dfrac{5}{12}\)
\(\Leftrightarrow\dfrac{?}{3}=\dfrac{-5}{12}:\dfrac{5}{8}=\dfrac{-5}{12}\cdot\dfrac{8}{5}=-\dfrac{2}{3}\)
\(\Leftrightarrow?=-2\)
\(c.\)
\(\dfrac{5}{6}\cdot\dfrac{3}{?}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{?}=\dfrac{1}{4}:\dfrac{5}{6}=\dfrac{1}{4}\cdot\dfrac{6}{5}=\dfrac{3}{10}\)
\(\Leftrightarrow?=10\)
Mk gọi ? = x nha
a) \(\dfrac{-2}{3}.\dfrac{x}{4}=\dfrac{1}{2}\)
\(\dfrac{x}{4}=\dfrac{1}{2}:\dfrac{-2}{3}\)
\(\dfrac{x}{4}=\dfrac{-3}{4}\)
⇒x=-3
b)\(\dfrac{x}{3}.\dfrac{5}{8}=\dfrac{-5}{12}\)
\(\dfrac{x}{3}=\dfrac{-5}{12}:\dfrac{5}{8}\)
\(\dfrac{x}{3}=\dfrac{-2}{3}\)
⇒x=-2
c)\(\dfrac{5}{6}.\dfrac{3}{x}=\dfrac{1}{4}\)
\(\dfrac{3}{x}=\dfrac{1}{4}:\dfrac{5}{6}\)
\(\dfrac{3}{x}=\dfrac{3}{10}\)
⇒x=10
`a)1/2 . [-3]/4 . [-5]/8 . [-8]/9=[1. (-3).(-5).(-8)]/[2.4.8.3.3]=[-5]/[2.4.3]=[-5]/24`
`b)(2/[1.3]+2/[3.5]+2/[5.7]).([10.13]/3-[2^2]/3-[5^3]/3)`
`=(1-1/3+1/3-1/5+1/5-1/7).[10.13-2^2-5^3]/3`
`=(1-1/7).[130-4-125]/3`
`=6/7 . 1/3 = 2/7`
____________________________________________________
`8/9+1/9 . 2/9+1/9 . 7/9`
`=8/9+1/9.(2/9+7/9)`
`=8/9+1/9 . 9/9`
`=8/9+1/9=9/9=1`
a) \(\dfrac{1}{2}\cdot\dfrac{-3}{4}\cdot\dfrac{-5}{8}\cdot\dfrac{-8}{9}\)
\(=\dfrac{1\cdot\left(-3\right)\cdot\left(-5\right)\cdot\left(-8\right)}{2\cdot4\cdot8\cdot9}\)
\(=-\dfrac{5}{24}\)
b) \(\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}\right)\cdot\left(\dfrac{10\cdot13}{3}-\dfrac{2^2}{3}-\dfrac{5^3}{3}\right)\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\right)\cdot\left(\dfrac{130}{3}-\dfrac{4}{3}-\dfrac{125}{3}\right)\)
\(=\left(1-\dfrac{1}{7}\right)\cdot\dfrac{1}{3}\)
\(=\dfrac{6}{7}\cdot\dfrac{1}{3}\)
\(=\dfrac{2}{7}\)
\(\dfrac{8}{9}+\dfrac{1}{9}\cdot\dfrac{2}{9}+\dfrac{1}{9}\cdot\dfrac{7}{9}\)
\(=\dfrac{8}{9}+\dfrac{2}{81}+\dfrac{7}{81}\)
\(=\dfrac{72}{81}+\dfrac{2}{81}+\dfrac{7}{81}\)
\(=1\)
a) Ta có
S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)
S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)
b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)
A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A = \(2-\dfrac{1}{99}\)
A = \(\dfrac{197}{99}\)
c) Ta có
B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B = \(1-\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
d) Ta có
C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)
C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)
C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))
Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{99}\)
D = \(\dfrac{97}{198}\)
=> C = 51 + 100.\(\dfrac{97}{198}\)
C = 51 + \(\dfrac{4850}{99}\)
C = \(\dfrac{9899}{99}\)
Đây là bài làm của mình sai thì nx nha
biểu thứ trên là A nha mấy bạn