K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Lời giải:
Sửa đề: $z$ đầu tiên ở mẫu đổi thành $a$.

Ta có:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$

$=\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}$

$=\frac{abz-cya+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx=0$

$\Rightarrow bz=cy; cx=az; ay=bx$

$\Rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$

Ta có đpcm.

16 tháng 11 2017

Ta có :

\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\Rightarrow cy=bz\Rightarrow\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\Rightarrow az=cx\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra:\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

2 tháng 4 2022

undefined

8 tháng 8 2021

Ta có :

\(\dfrac{cy-bx}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}=\dfrac{bxz-cxy+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)

\(\Rightarrow\dfrac{cy-bz}{x}=0\) \(\Rightarrow cy=bz\) \(\Rightarrow\) \(\dfrac{b}{y}=\dfrac{c}{z}\left(1\right)\)

\(\Rightarrow\dfrac{az-cx}{y}=0\) \(\Rightarrow az=cx\) \(\Rightarrow\dfrac{a}{x}=\dfrac{c}{z}\left(2\right)\)

Từ (1) và (2) suy ra : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

3 tháng 12 2017

10 người cùng cày trên 1 cánh đồng hết 10,5 h

a)Hỏi nếu 5 máy cùng cày trên 9 mảnh ruộng như thế hết bao nhiêu thời gian ,biết rằng năng xuất của 1 máy =15 người và cày 1 cánh đồng 3h

b)cho chu vi mảnh ruộng là 18 m , và chiều dài tỉ lệ với chiều rộng là 5:1 . hỏi giá tiền của phải trả cho người cày hết 9 mảnh ruộng đó là bao nhiêu tiền biết 1m2 phải trả 10000 đồng

3 tháng 12 2017

làm hộ mk rồi mk giải cho mik lm bài này rồi

4 tháng 7 2017

Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\) thì \(x=ak,y=bk,z=ck\)

\(\dfrac{bz-cy}{a}=\dfrac{bck-bck}{a}=0\) __( 1 )__

\(\dfrac{cx-az}{b}=\dfrac{ack-ack}{b}=0\) __( 2 )__

\(\dfrac{ay-bx}{c}=\dfrac{abk-abk}{c}=0\) __( 3 )__

Từ ( 1 ), ( 2 ), ( 3 ) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)