\(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
\(a,\dfrac{4a-3b}{4c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

bài này bạn cứ đặt a=bk, c=dk là được dễ tính lắm sao đó thì thay vào rồi rút gọn là được khi đó bạn sẽ chứng minh được dễ dàng hihi

3 tháng 8 2018

bạn giải luôn giúp mình nha Huyền Anh Lê

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng tỉ lệ thức ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)

b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng tỉ lệ thức ta có "

\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Các câu còn lại bạn làm tương tự

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\frac{4a-3b}{4a+3b}=\frac{4c-3d}{4c+3d}\Rightarrow\frac{4a-3d}{4c-3d}=\frac{4a+3b}{4c+3d}\)

b) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{2a}{3b}=\frac{2c}{2d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

30 tháng 9 2017

Các bạn chỉ cần giúp mk câu b, c, e, f,

15 tháng 12 2017

bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui

9 tháng 8 2017

Không có điều kiện gì à ( Kiểu \(\dfrac{a}{b}=\dfrac{c}{d}\) ấy )

6 tháng 7 2019

nhân chéo r rút gọn

6 tháng 7 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\)

Vậy \(\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(ĐPCM\right)\)

21 tháng 10 2018

đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k => a=bk; b=dk

\(\dfrac{a}{3b}\)=\(\dfrac{bk}{3b}=\dfrac{k}{3}\)

\(\dfrac{c}{3d}=\)\(\dfrac{dk}{3d}=\)\(\dfrac{k}{3}\)

=>\(\dfrac{a}{3b}=\)\(\dfrac{c}{3d}\)

22 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

ta có : \(\dfrac{a}{3b}=\dfrac{bk}{3b}=\dfrac{k}{3}\left(1\right)\)

lại có \(\dfrac{c}{3d}=\dfrac{dk}{3d}=\dfrac{k}{3}\left(2\right)\)

từ (1) và (2) => \(\dfrac{a}{3b}=\dfrac{c}{3d}\)

18 tháng 7 2018

\(a,Tacó:\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a^3}{2^3}=\dfrac{a\cdot a\cdot a}{2\cdot2\cdot2}=\dfrac{a\cdot b\cdot c}{2\cdot3\cdot5}=\dfrac{810}{30}=27\\ \Rightarrow\left\{{}\begin{matrix}a=27\cdot2=54\\b=27\cdot3=81\\c=27\cdot5=135\end{matrix}\right.\\ Vậy...\)

Các câu khác cx cùng dạng tương tự bn tự làm nha!

24 tháng 7 2018

a, \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và a . b . c = 810

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=k\)

=> \(\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)

Mà a . b . c = 810

=> 2k . 3k . 5k = 810

=> 30\(k^3\) = 810

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k^3=3^3\)

=> k = 3

=> \(a=2.3=6\)

\(b=3.3=9\)

\(c=5.3=15\)

Vậy .....

b, \(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}\)và a - 3b + 4c = 62

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}=\dfrac{a-3b+4c}{4-3.3+4.9}=\dfrac{62}{31}=2\)

=> \(\dfrac{a}{4}=2\Rightarrow a=8\)

\(\dfrac{b}{3}=2\Rightarrow b=6\)

\(\dfrac{c}{9}=2\Rightarrow c=18\)

Vậy .......