Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

A=\(\dfrac{5}{4}\).(5-\(\dfrac{4}{3}\)).(\(-\dfrac{1}{11}\))
= \(\dfrac{5}{4}\).\(\dfrac{11}{3}\).(\(-\dfrac{1}{11}\))
=\(\dfrac{5}{4}\).[\(\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\text{]}\)
=\(\dfrac{5}{4}.\dfrac{1}{3}\)
=\(\dfrac{5}{12}\) (1)
B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\) =\(\dfrac{3}{4}:\text{[}\left(-12\right).\left(-\dfrac{2}{3}\right)\text{]}\)
=\(\dfrac{3}{4}:8\) =\(\dfrac{3}{4}.\dfrac{1}{8}\)=\(\dfrac{3}{32}\)(2)
C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) =\(\dfrac{5}{4}:\text{[}\left(-15\right).\left(-\dfrac{2}{5}\right)\text{]}\)
=\(\dfrac{5}{4}:6=\dfrac{5}{4}.\dfrac{1}{6}=\dfrac{5}{24}\left(3\right)\)
D=(-3).\(\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\) =(-3).\(\left(-\dfrac{7}{12}\right)\):(-7)=\(\dfrac{7}{4}:\left(-7\right)\)=\(\dfrac{7}{4}\).\(\left(\dfrac{-1}{7}\right)\)=\(\dfrac{-1}{4}\) (4)
Từ (1),(2),(3)và(4)=>Ta có thể sắp xếp các kết quả trên theo thứ tự tăng dần là:
(Bạn tự làm nhé! mình bận đi học rồi)

2.
a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)
Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)
Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !

a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\Rightarrow ad=cb\)
=> \(ad+bd=bc+bd\)
\(\Rightarrow d\left(a+b\right)=b\left(c+d\right)\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)
\(\Rightarrow\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\rightarrowđpcm\)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\rightarrowđpcm\)

3x - 2y + 7z = -48 \(\Rightarrow\) (3x - 9) - (2y + 8) + (7z - 35) = -100
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-3}{-4}=\dfrac{y+4}{7}=\dfrac{z-5}{3}=\dfrac{3x-9}{-12}=\dfrac{2x+8}{14}=\dfrac{7z-35}{21}=\dfrac{\left(3x-9\right)-\left(2x+8\right)+\left(7z-35\right)}{-12-14+21}=\dfrac{-100}{-5}=20\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-3}{-4}=20\Rightarrow x=-77\\\dfrac{y+4}{7}=20\Rightarrow y=136\\\dfrac{z-5}{3}=20\Rightarrow z=65\end{matrix}\right.\)
Bài 1:
Ta có:\(\dfrac{x-3}{-4}=\dfrac{y+4}{7}=\dfrac{z-5}{3}=\dfrac{3x-9}{-12}=\dfrac{2y+8}{14}=\dfrac{7z-35}{21}\)và 31-2y+7z=-48
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{3x-9}{-12}=\dfrac{2y+8}{14}=\dfrac{7z-35}{21}=\dfrac{3x-9-2y-8+7z-35}{-5}=\dfrac{\left(3x-2y+7z\right)-9-8-35}{-5}=-\dfrac{100}{-5}=20\)
\(\Rightarrow\dfrac{x-3}{-4}=20\Rightarrow x=-77\)
\(\Rightarrow\dfrac{y+4}{7}=20\Rightarrow y=136\)
\(\Rightarrow\dfrac{z-5}{3}=20\Rightarrow z=65\)
Vậy ta tìm được các số (x;y;z)=(-77;136;65)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)
\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)
\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
CHÚC BẠN HỌC TỐT!!
\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )
Ta đặt:
\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk
a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)
Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
giúp mình với
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*)suy ra:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)\(=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)
b) Tương tự câu a nhé bạn!