Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{A_1}+\widehat{B_1}=90^o\) (\(\Delta ABH\) vuông tại H) (1)
lại có: \(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\Delta ABC\) vuông tại A) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{A_2}=\widehat{B_1}\) (= \(\widehat{A_1}\))
\(\Delta ABH\) và \(\Delta CAH\) có:
\(\widehat{A_2}=\widehat{B_1}\) (cmt)
\(\widehat{H}\) chung
Vậy \(\Delta ABH\) đồng dạng với \(\Delta CAH\).
b) Áp dụng định lý Py-ta-go vào tam giác vuông AHB, ta có:
\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH=\sqrt{15^2-12^2}\)
\(\Leftrightarrow BH\) = 9 (cm)
Ta có: \(\Delta ABH\) đồng dạng với \(\Delta CAH\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{AH}{CH}=\dfrac{BH}{AH}\Leftrightarrow\dfrac{12}{CH}=\dfrac{9}{12}\Leftrightarrow CH=16\left(cm\right)\\\dfrac{AB}{AC}=\dfrac{BH}{AH}\Leftrightarrow\dfrac{15}{AC}=\dfrac{9}{12}\Leftrightarrow AC=20\left(cm\right)\end{matrix}\right.\)
Vậy BH = 9 (cm)
CH = 16 (cm)
AC = 20 (cm)
c) Ta có: \(\dfrac{CE}{AC}=\dfrac{CF}{CH}\left(\dfrac{5}{20}=\dfrac{4}{16}=\dfrac{1}{4}\right)\)
\(\Rightarrow\) EF // AH, mà AH \(\perp\) BC
\(\Rightarrow\) EF \(\perp\) BC
\(\Rightarrow\) \(\Delta CEF\) vuông tại F.
d) \(\Delta CEF\) và \(\Delta CBA\) có:
\(\widehat{A}=\widehat{F}\left(=90^o\right)\)
\(\widehat{C}\) chung
Vậy \(\Delta CEF\) đồng dạng với \(\Delta CBA\)
\(\Rightarrow\) \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
\(\Rightarrow\) CE . CA = CF . CB (đpcm)
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Bài 1
A B C M H K 1 a, Xét ΔABM và ΔACB có
\(\left\{{}\begin{matrix}\widehat{BAC}\text{ chung}\\\widehat{ABM}=\widehat{C}\text{(gt)}\end{matrix}\right.\)
⇒ ΔABM ~ ΔACB (g.g)(đpcm)
b, Vì ΔABM ~ ΔACB
⇒ \(\frac{AB}{AC}=\frac{AM}{AB}\)
⇒ AB2 = AM . AC
⇒ AM = \(\frac{AB^2}{AC}=\frac{2^2}{4}=\frac{4}{4}=1\) (cm)
Vậy AM = 1cm
c, Vì ΔABM ~ ΔACB
⇒ \(\widehat{M_1}=\widehat{ABC}\)
⇒ \(\widehat{M_1}=\widehat{ABH}\)
Vì AH ⊥ BC ⇒ \(\widehat{AHB}=90^0\)
AK ⊥ BM ⇒ \(\widehat{AKM}=90^0\)
ΔAHB và ΔAKM có
\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{M_1}\\\widehat{AHB}=\widehat{AKM}=90^0\end{matrix}\right.\)
⇒ ΔAHB ~ ΔAKM (g.g)
⇒ \(\frac{AB}{AM}=\frac{AH}{AK}\)
⇒ AB . AK = AH . AM (đpcm)
d, Vì ΔABH ~ ΔAMK
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{AB}{AM}\right)^2\) (Tỉ số diện tích của 2 tam giác đồng dạng bằng bình phương tỉ số đồng dạng)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=\left(\frac{2}{1}\right)^2\)
⇒ \(\frac{\text{SΔABH}}{\text{SΔAMK}}=4\)
⇒ SΔABH = 4SΔAMK (đpcm)
ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ABCHKIEF
a)
Xét \(\Delta\)ABC và \(\Delta\)HBA có:
^BAC = ^BHA ( = 90 độ )
^ABC = ^HBA ( ^B chung )
=> \(\Delta\)ABC ~ \(\Delta\)HBA
b) AB = 3cm ; AC = 4cm
Theo định lí pitago ta tính được BC = 5 cm
Từ (a) => \(\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow BH=\frac{AB^2}{BC}=1,8\)m
c) Xét \(\Delta\)AHC và \(\Delta\)AKH có: ^AKH = ^AHC = 90 độ
và ^HAC = ^HAK ( ^A chung )
=> \(\Delta\)AHC ~ \(\Delta\)AKH
=> \(\frac{AH}{AK}=\frac{AC}{AH}\Rightarrow AH^2=AC.AK\)
d) Bạn kiểm tra lại đề nhé!
a, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}=\dfrac{4}{12}=\dfrac{5}{15}=\dfrac{1}{3}\)
=> DE//BC
vì DE//BC => tam giác ADE đồng dạng tam giác ADC
b, ta có EC= 15-5=10
BD= 12-4=8
vì EF//AB
=> \(\dfrac{EC}{AC}=\dfrac{EF}{AB}=\dfrac{10}{15}=\dfrac{EF}{12}\)
=> EF=(10.12):15=8
=> EF=BD
Xét tứ giác BDEF có:
EF=BD
EF//BD (vì EF//AB)
=> BDEF là hình bình hành
c,Vì BDEF là hình bình hành
=> DE=BF
mà \(\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{DE}{18}=\dfrac{4}{12}\) (DE//BC)
=> DE=BF= (18.4):12=6
=>FC= 18-6=12