Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:BC=10cm
=>AM=5cm
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét tứ giác AMCF có
D là trung điểm chung của AC và MF
MA=MC
Do đó: AMCF là hình thoi
vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.
\(\Rightarrow\)góc M = 90 độ
\(\Rightarrow FH//ME ; FM//HE\)
\(\Rightarrow\)tứ giác FMEH là hình chữ nhật
\(\Rightarrow\)ME=FH
a ) tứ giác MFHE có :
\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )
hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)
\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)
\(\Rightarrow\widehat{EMF}=90^o\)
\(\Rightarrow FM\perp ME\left(dhnb\right)\)
mà \(HE\perp ME\left(gt\right)\)
\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)
\(\Rightarrow FHEM\)là hình thang
mà\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)
\(\Rightarrow FHEM\)là hình thang cân
\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )
b ) kẻ EF
có M là trung điểm của BC ( gt )
\(\Delta ABC\)cân tại A ( gt )
\(\Rightarrow AM\)là đường cao
\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)
xét \(\Delta MAD\)và \(\Delta MCE\)có
\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)
\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )
xét \(\Delta ADK\)và \(\Delta AEK\)có :
\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)
\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )
mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)
\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp DK\left(dhnb\right)\)
AM là đường cao \(\Rightarrow AM\perp BC\)
\(\Rightarrow DK//BC\)
\(hayBK//MC\)
\(\Rightarrow MDKC\)là hình thang
a) áp dụng định lý Pytago ta có:
BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 62 + 82 = 100
\(\Rightarrow\)BC = \(\sqrt{100}\)= 10
\(\Delta\)ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = \(\frac{BC}{2}\)= \(\frac{10}{2}\)= 5cm
b) AKMN là hình chữ nhật vì \(\widehat{AKM}\)= \(\widehat{KAN}\)= \(\widehat{ANM}\)= 900
c) KM \(\perp\)AB; AB \(\perp\)AC
\(\Rightarrow\)KM // AC
\(\Delta ABC\)có KM // AC; MB = MC
\(\Rightarrow\)KA = KB
\(\Rightarrow\)KM là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)KM = \(\frac{AC}{2}\)
CM tương tự ta có: NC =\(\frac{AC}{2}\)
suy ra KM = NC
mà KM // NC
nên KMNC là hình bình hành