\(\Delta ABC\)vuông A, M là trung điểm AC, D đối xứng B qua M, N đối xứng B qua A. MN...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

A B C D N E M I K 1 2 1 1

Giải: Xét t/giác ABE và t/giác ANM

có: AB = BN (gt)

 \(\widehat{B_1}=\widehat{N_1}\) (slt của AE // MN)

  \(\widehat{B_1}=\widehat{B_2}\) (đối đỉnh)

=> t/giác ABE = t/giác ANM (g.c.g)

=> EA = AM (2 cạnh t/ứng)

Xét tứ giác EBMN có AB = AN (gt)

       EA = MA (cmt)

=> tứ giác EBMN là hình bình hành

có BN \(\perp\)EM (gt)

=> EBMN là hình thoi

Để hình thoi EBMN là hình vuông

<=> EM = BN <=> AB = AM

do AM = MC = 1/2AC

<=> AB = 1/2AC 

<=> AC = 2AB

Vậy để tứ giác EBMN là hình vuông <=> t/giác ABC có AC = 2AB

21 tháng 12 2017

A C B M D N I K E

a) Xét tứ giác ABCD có M là trung điểm AC và M cũng là trung điểm BD nên ABCD là hình bình hành (dhnb)

b) Tứ giác ABCD là hình bình hành nên BA // CD và BA = CD.

Vậy nên AN cũng song song và bằng CD. Suy ra ANDC là hình bình hành.

Lại có \(\widehat{NAC}=90^o\) nên ANDC là hình chữ nhật.

c) Ta chứng minh bổ đề:

Cho tam giác ABC có M là trung điểm cạnh AB. Đường thẳng đi qua M song song với cạnh BC và cắt cạnh AC tại điểm N. Chứng minh NA = NC.

Chứng minh:

Từ M vẽ tia song song với AC, cắt BC tại F. Tứ giác MNCF có hai cạnh MN và FC song song nhau nên là hình thang. Hình thang MNCF có hai cạnh bên song song nhau nên hai cạnh bên đó bằng nhau (theo tính chất hình thang). Vậy nên MF = NC (1)

Xét hai tam giác BMF và MAN, có: \(\widehat{MBF}=\widehat{AMN}\)  (hai góc đồng vị), BM = AM, \(\widehat{BMF}=\widehat{MAN}\) (hai góc đồng vị). 

\(\Rightarrow\Delta BMF=\Delta MAN\left(g-c-g\right)\Rightarrow MF=AN\left(2\right)\) 

Từ (1) và (2) suy ra NA = NC. Bổ đề được chứng minh.

Áp dụng bổ đề vào các tam giác AKC và BNI ta có: KI = IC; KI = BK

Vậy nên KC = 2BK.

d) Xét tam giác EBA và MNA có:

\(\widehat{EBA}=\widehat{MNA}\) (Hai góc so le trong)

AB chung 

\(\widehat{BAE}=\widehat{NAM}\left(=90^o\right)\)

\(\Rightarrow\Delta EBA=\Delta MNA\) (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow EB=MN\)

Vậy thì tứ giác EBMN là hình bình hành. Lại có \(EM\perp BN\) nên EBMN là hình thoi.

Để EBMN là hình vuông thì BN = EM hay AB = AM.

Do AC = 2AM nên tam giác ABC phải thỏa mãn: AC = 2AB thì EBMN là hình vuông.

1 tháng 1 2017

Hướng giải: 

a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật

b) C/m IN là đg tb của tam giác ABC => NA = NC 

Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)

*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải. 

1 tháng 1 2017

Bài 2: 

a) HE//MN ( _|_ KM) và M^ = 90o => hình thang vuông

b) Tương tự câu b bài 1

c) Thắc mắc về đề bài. Tương tự câu c bài 1 

Bài 1 Cho biểu thức A = \(\frac{5}{x+3}\)- \(\frac{2}{3-x}\)- \(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)a) Rút gon biểu thức Ab) Tính giá trị cua A khi\(|x-2=1|\)c) Tìm giá trị nguyên của x để A có giá trị nguyênBài 2Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua Ma) Chứng minh tứ giác ABCD là hình bình hành b) Gọi N là điểm đối xứng...
Đọc tiếp

Bài 1 

Cho biểu thức A = \(\frac{5}{x+3}\)\(\frac{2}{3-x}\)\(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)

a) Rút gon biểu thức A

b) Tính giá trị cua A khi\(|x-2=1|\)

c) Tìm giá trị nguyên của x để A có giá trị nguyên

Bài 2

Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua M

a) Chứng minh tứ giác ABCD là hình bình hành 

b) Gọi N là điểm đối xứng với B qua A . Chứng minh tứ giác ACDN là hình chữ nhật

c) Kéo dài MN cắt BC tại I . Vẽ đường thẳng A song song với MN cắt BC ở K. Chứng minh : KC = 2BK

d) Qua B kẻ dduownfd thẳng song song với MN cắt AC kéo dài tại E. Tam giác ABC cần có thêm điều kiện gì để tứ giác EBMN là hình vuông

Bài 3

Cho a tthoar mãn a2 - 5a + 2 = 0 . Tính giá trị của biểu thức

P = a5 - a4 - 18a3 + 9a-5a + 2017 + (a4 - 40a2 + 4 ) : a2

giúp em với mai em nọp bài

em cảm ơn trước

 

1
20 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

      \(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x}{x+3}\)

b) Khi \(\left|x-2\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Thay x = 1 vào A, ta được :

\(A=\frac{-3}{1+3}=\frac{-3}{4}\)

Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)

c) Để \(A\inℤ\)

\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)

\(\Leftrightarrow-3x⋮x+3\)

\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)

\(\Leftrightarrow9⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

Do đó: ABCD là hìnhbình hành

b: Xét tứ giác ANDC có

AN//DC

AN=DC

góc CAN=90 độ

Do đó: ANDC là hình chữ nhật

11 tháng 10 2017

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng J_1: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [N, M] Đoạn thẳng j: Đoạn thẳng [Q, M] Đoạn thẳng m: Đoạn thẳng [N, P] Đoạn thẳng n: Đoạn thẳng [Q, P] Đoạn thẳng p: Đoạn thẳng [A, P] Đoạn thẳng q: Đoạn thẳng [M, I] B = (0.52, -5.67) B = (0.52, -5.67) B = (0.52, -5.67) C = (19.2, -5.49) C = (19.2, -5.49) C = (19.2, -5.49) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j

Gọi giao điểm của NP với AB và AC lần lượt là I và J.

Gọi giao điểm của NM với BI là K; của MQ với JC là H.

Theo giả thiết ta suy ra K, H lần lượt là trung điểm của NM và MQ. Hơn nữa ta cũng có  \(NM\perp BI;MQ\perp JC\)

Do NP // MQ mà \(MQ\perp JH\) nên \(NP\perp JH\)

\(\Rightarrow\widehat{AIJ}=90^o-\widehat{BAC}=30^o\)

Vậy nên \(\widehat{NIB}=\widehat{AIJ}=30^o\) (Hai góc đối đỉnh)

\(\Rightarrow\widehat{NIK}=90^o-\widehat{NIB}=60^o\)

Xét tứ giác NPQM có NP // MQ; NM // PQ nên NPQM  là hình bình hành. 

Vậy \(\widehat{PQM}=\widehat{INM}=60^o\)

Ta có \(\widehat{BMK}=90^o-\widehat{ABC}=30^o;\widehat{NMI}=\widehat{INM}=60^o;\widehat{CMH}=90^o-\widehat{ACB}=30^o\)

nên \(\widehat{IMH}=180^o-30^o-60^o-30^o=60^o\)

Suy ra \(\widehat{IMH}=\widehat{PQH}\left(=60^o\right)\)

Xét hình thang IPQM có \(\widehat{IMH}=\widehat{PQH}\) nên nó là hình thang cân.

Ta có H là trung điểm MQ, \(JH\perp MQ;JH\perp IP\) nên I là trung điểm IP.

Xét tam giác AIP có AJ là đường cao đồng thời trung tuyến nên AIP là tam giác cân tại A.

Vậy AJ cũng là phân giác hay \(\widehat{JAP}=\widehat{JAI}=60^o\)

Suy ra \(\widehat{JAP}=\widehat{ACB}\left(=60^o\right)\)

Mà chúng lại ở vị trí so le trong nên AP // BC.