Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có
\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)
-> AB = A'B'
AC = A'C'
BC = B'C'
=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)
=> AH = A'H' (2 cạnh tương ứng)
Chúc bạn học tốt
bn tham khảo ở đây nha:http://text.123doc.org/document/658748-6-bai-toan-hinh-4-de-thi-ki-i-toan-8.htm
Xét △AMD và △DMC
AB=AC(giả thuyết)
Cạnh AM là cạnh chung
BM= CM ( M là trung điểm của cạnh BC)
=> △AMD=△DMC
Sorry bạn nhé mk chỉ bt làm câu a thui ☹
Vì \(\Delta ABC=\Delta A'B'C'\Rightarrow\) AB = A'B' ; BC = B'C'
Ta co: BM=1/2BC ; B'M'=1/2B'C' mà BC = B'C' => BM =B'M'
a, \(\Delta AMB=\Delta A'M'B'\left(ccc\right)\)vì có AB = A'B' ; BM =B'M' ; AM = A'M'
b, => \(\widehat{AMB}=\widehat{A'M'B'}\)
Ta co: \(\widehat{AMB}+\widehat{AMC}=180^O\) ; \(\widehat{A'M'B'}+\widehat{A'M'C'}=180^o\)
mà \(\widehat{AMB}=\widehat{A'M'B'}\) => \(\widehat{AMC}=\widehat{A'M'C'}\)
a/ Ta có: \(\Delta ABC=\Delta A'B'C'\)
\(\Rightarrow AB=A'B'\left(1\right)\)
\(\Rightarrow BC=B'C'\)
\(\Rightarrow BM=B'M'\left(2\right)\)
Xét \(\Delta AMB\)và \(\Delta A'M'B'\) có
\(AB=A'B'\)(theo )
\(BM=B'M'\)(theo 2)
\(AM=A'M'\)(gt)
\(\Rightarrow\Delta AMB=\Delta A'M'B'\)
b/ Ta có: \(\Delta AMB=\Delta A'M'B'\)
\(\Rightarrow\widehat{AMB}=\widehat{A'M'B'}\)
Mà \(\hept{\begin{cases}\widehat{AMC}=180^o-\widehat{AMB}\\\widehat{A'M'C'}=180^o-\widehat{A'M'B'}\end{cases}}\)
\(\Rightarrow\widehat{AMC}=\widehat{A'M'C'}\)
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD