Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)vuông tại A
Áp dụng định lí py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC^2=20^2+15^2=625\)
\(\Rightarrow BC=\sqrt{625}=25\left(cm\right)\)
\(\Delta AHB\)vuông tại H
\(\Rightarrow HA^2+HB^2=AB^2\)
\(\Rightarrow HB^2=AB^2-HA^2=20^2-12^2=256\)
\(\Rightarrow HB=\sqrt{256}=16\left(cm\right)\)
\(\Delta AHC\)vuông tại H
\(\Rightarrow AH^2+CH^2=AC^2\)
\(\Rightarrow CH^2=AC^2-AH^2=15^2-12^2=81\)
\(\Rightarrow CH=\sqrt{81}=9\left(cm\right)\)
-Tam giác ABC vuông tại A
Áp dụng định lí Pytago
Ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=\sqrt{625}=25\) (cm)
-Tam giác ABH vuông tại H
Theo Pytago có: \(BH^2+AH^2=AB^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\) (cm)
- Tam giác AHC vuông tại H
Theo pytago: \(AH^2+CH^2=AC^2\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\) (cm)
a) Fix: \(\left\{{}\begin{matrix}BC=52cm\\AB=2cm\\AC=48cm\end{matrix}\right.\) Có thể dễ dàng thấy sai đề từ \(AB+AC< BC\) và \(\Delta ABC\) không vuông như điều cần chứng minh
Ta có hình vẽ:
a) \(AB^2+AC^2=20^2+48^2=2704=52^2=BC^2\)
Vậy \(\Delta ABC\) vuông tại \(A\)
b) Áp dụng tính chất: Trong tam giác vuông bình tích 2 cạnh góc vuông bằng cạnh huyền nhân với đường cao
Có thể dễ dàng tìm được AH và S_ABC
bạn tự vẽ hình nhé ì bạn đang cần gấp nên mk cx k vẽ kẻo mất thời gian
anh tự vẽ hình :
a, xét tam giác AHB và tam giác AHC có : AH chung
AB = AC do tam giác ABC cân tại A (gt)
góc AHB = góc AHC do AH | BC (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác ABC cân tại A (gt) => góc ABC = góc ACB (tc)
góc ABD + góc ABC = 180o (kb)
góc ACE + góc ACB = 180o (kb)
=> góc ABD = góc ACE
xét tam giác ABD và tam giác ACE có : AB = AC (câu a)
DB = CE (gt)
=> tam giác ABD = tam giác ACE (c - g - c)
=> AD = AE (đn)
=> tam giác ADE cân tại A (đn)
a, Xét △HAC vuông tại H có: CH2 + AH2 = AC2 (định lý Pytago)
=> (9,6)2 + (7,2)2 = AC2 => 92,16 + 51,84 = AC2 => AC2 = 144 => AC = 12 (cm)
b, Ta có: \(S_{\text{△}ABC}=\frac{AC.AB}{2}\)
Và \(S_{\text{△}ABC}=\frac{AH.BC}{2}\)
\(\Rightarrow\frac{AC.AB}{2}=\frac{AH.BC}{2}\)( = S△ABC)
=> AC . AB = AH . BC (đpcm)
, Ta có :
AB^2 + AC^2 = 20^2 + 48^2
= 400 + 2304 = 2704 = 52^2
= BC^2
Từ đó => AB^2 + AC^2 = BC^2
Theo định lý PY ta go => tam giác ABC vuông tại A
MIK CẦN LÀM CÂU B NHA M.N