K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

27 tháng 3 2023

siêu phẩm của chữ :)) dù vẫn đọc đc nhưng .... 

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b; góc ABD=1/2*180=90 độ

=>BD vuông góc AB

=>BD//CH

góc ACD=1/2*180=90 độ

=>CD vuông góc AC

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

=>BC cắt HDtại trung điểm của mỗi đường

=>H,M,D thẳng hàng

a: góc BFC=góc BEC=90độ

=>BFEC nội tiếp

b: Xét ΔBEI và ΔBME có

góc BEI=góc BME

góc EBI chung

=>ΔBEI đồng dạng vói ΔBME

=>BE^2=BI*BM=BS*BA

 

a: Xét tứ giác BDHF có 

\(\widehat{BDH}+\widehat{BFH}=180^0\)

Do đó: BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

29 tháng 1 2021

a) Ta có  AD là đường cao của △ABC (gt) 

=> AD⊥BC => \(\widehat{CDA} = 90^o\)

Tương tự ta có \(\widehat{CEB}=90^o \)

Tứ giác CEHD có : \(\widehat{CDA} + \widehat{CEB} = 90^o + 90^o = 180^o \) => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn 

b) △AEH và △ADC , có  

\(\begin{cases} \widehat{AEH}=\widehat{ADC}=90^o\\ \widehat{CAD} ( góc chung ) \end{cases} \)=> △AEH đồng dạng với △ADC ( g.g) 

=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC} \) ( tỉ số đồng dạng ) => AE.AC = AH.AD (1)

Ta có \(\widehat{AFC} = 90^o \) ( góc nội tiếp chắn nửa đường tròn ) 

△AFC vuông tại F , có FE là đường cao ( BF ⊥ AC tại E ) => \(AF^2\) = AE.AC ( hệ thức lượng ) (2) 

Từ (1) và (2) => \(AF^2= AH.AD\)

31 tháng 5 2021

Ta có \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BCEF nội tiếp đường tròn đường kính BC. Tâm I của đường tròn này là trung điểm của BC

31 tháng 5 2021

Đúng ko vậy ạ