Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi bạn nhé, câu cuối, mik chưa chắc chắn lắm đâu!
a, Xét \(\Delta ABDvà\Delta ACEcó:\\ \left\{{}\begin{matrix}\widehat{BDA}=\widehat{CEA}\left(=90^0\right)\\\widehat{BAC}làgócchung\\AB=AC\left(gt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)
b, Theo câu a , ta có :
\(\widehat{ABD}=\widehat{ACE}\left(haigóctươngứng\right)\)
Lại có ;\(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
\(\Rightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\\ \Rightarrow\Delta BHCcântạiH\)
c, Xét tam giác vuông DHC ta có :
HC > HD ( do HC là cạnh huyền )
Mà HC = HB ( tam giác BHC cân tại H )
\(\Rightarrow HB>HD\)
d, Gọi giao điểm của BN và CM là I.
Ta có ; \(HB=HC;MH=NH\Rightarrow HB+HM=HC+HN\\ \Leftrightarrow BM=CN\)
\(Xét\Delta BCMvà\Delta CBNcó:\\ \left\{{}\begin{matrix}BM=CN\left(cmt\right)\\\widehat{MBC}=\widehat{NCB}\left(cmt\right)\\BClàcạnhchung\end{matrix}\right.\\ \Rightarrow\Delta BCM=\Delta CBN\left(c-g-c\right)\\ \Rightarrow\widehat{NBC}=\widehat{MCB}\left(haigóctươngứng\right)\\ \Rightarrow\Delta BICcântạiI\)
Ta có :\(\left\{{}\begin{matrix}AB=AC\\HB=HC\end{matrix}\right.\\ \Rightarrow A,HthuộcđườngtrungtrựccủaBC\\ \Rightarrow AHlàđườngtrungtrựccủaBC\)
Vì IB = IC nên I cũng thuộc đường trung trực của BC
\(\Rightarrow I\in AH\)
Mà \(I\in IB;I\in IC\)
\(\Rightarrow BN,AH,CMđồngquy\)
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC(tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD=tam giác ACE(ch-gn)
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)
\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)
Do đó tam giác BHC cân tại H
a. Xét ΔABD và ΔBCE có: ∠ ADB = ∠ AEC = 90º (gt)
BA = AC (gt)
∠BAC chung
⇒ ΔABD = ΔACE (cạnh huyền – góc nhọn)
b). ΔABD = ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (ΔABC cân tại A )
⇒ ∠ABC – ∠ABD = ∠ACB – ∠ACE => ∠HBC = ∠HCB
⇒ ΔBHC là tam giác cân
c. ΔHDC vuông tại D nên HD <HC
mà HB = HC (ΔAIB cân tại H)
=> HD < HB
d. Gọi I là giao điểm của BN và CM
Xét Δ BNH và Δ CMH có:
BH = CH (Δ BHC cân tại H)
∠ BHN = CHM(đối đỉnh)
NH = HM (gt)
=> Δ BNH = Δ CMH (c.g.c) ⇒ ∠HBN = ∠ HCM
Lại có: ∠ HBC = ∠ HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM => ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (Δ ABC cân tại A) (2)
HB = HC (Δ HBC cân tại H) (3)
Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC
=> I; A; H thẳng hàng => các đường thẳng BN; AH; CM đồng quy
a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy
Bài giải :
a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đo: ΔABD=ΔACE
b: Xét ΔHBC có góc HBC=góc HCB
nên ΔHBC cân tại H
c: Ta có: HB=HC
mà HC>HD
nên HB>HD
a). Xét ΔABD và ΔBCE có: ∠ ADB = ∠ AEC = 90º (gt)
BA = AC (gt)
∠BAC chung
⇒ ΔABD = ΔACE (cạnh huyền – góc nhọn)
b). ΔABD = ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (ΔABC cân tại A )
⇒ ∠ABC – ∠ABD = ∠ACB – ∠ACE
=> ∠HBC = ∠HCB
⇒ ΔBHC là tam giác cân
c). ΔHDC vuông tại D nên HD <HC
mà HB = HC (ΔAIB cân tại H)
=> HD < HB
d). Gọi I là giao điểm của BN và CM
Xét Δ BNH và Δ CMH có:
BH = CH (Δ BHC cân tại H)
∠ BHN = CHM(đối đỉnh)
NH = HM (gt)
=> Δ BNH = Δ CMH (c.g.c) ⇒ ∠HBN = ∠ HCM
Lại có: ∠ HBC = ∠ HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM => ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (Δ ABC cân tại A) (2)
HB = HC (Δ HBC cân tại H) (3)
Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC
=> I; A; H thẳng hàng => các đường thẳng BN; AH; CM đồng quy
Gõ nhanh thế! Nguyệt Thần ra câu hỏi 19 phút trước là 5 phút sau có câu trả lời
a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy
hình bạn tự vẽ nhé!!
a, Xét tam giác ABD và tam giác ACE
có góc ADB = góc AEC (=90độ)
AB =AC (do tam giác ABC cân tại A)
góc A chung
=> 2 tam giác ABD=ACE(ch-gn)
b, xét tam giác BDC và tam giác CEB
có góc BDC = góc CEB (=90độ)
BC là cạnh chung
góc ABC = góc ACB (do tam giác ABC cân tại A)
=>2 tam giác BDC = CEB (ch-gn)
=> góc DBC = góc ECB(2 góc tương ứng)
Xét tam giác BHC có góc DBC = góc ECB (cmt)
=> tam giác BHC cân tại H
c, Xét tam giác DHC có HDC = 90 độ
=> HC > HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà HC = HB (vì tam giác BHC cân tại H)
Từ đó => HB>HD
d, mình chưa học!!sorry!!
chúc bạn hk tốt!!