K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

 a,chứng minh gócABD bằng góc ECA bằng góc ngoài (= BAM + 90 độ)

Tam giác ABD = tam giác ECA (c-g-c)

b, AD = AE (2 cạnh tương ứng) suy ra tam giác DAE cân tại a (định nghĩa)

Tam giác ADM vuông tại M suy ra ADM +DAM=90 độ mà góc ADM = EAC (2 góc tương ứng)

Suy ra DAM + EAC = 90 ĐỘ suy ra góc DAE = 90 độ suy ra tam giác DAE vuông cân tại A 

1 tháng 5 2018

minh lop 6 nha

KHONG LAM DUOC

2 tháng 5 2018

đm! làm dc thì làm chứ đừng giở mặt nghe chưa an binh

A B C M N E D Hình minh họa
Chứng minh :
a) Có △ABC cân tại A \(\Rightarrow AB=AC\left(t\text{/c }t\text{/g cân}\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(t\text{/c t/g cân}\right)\)
Xét △BEC vuông tại E và △CDB vuông tại D có:
BC - cạnh chung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △BEC = △CDB ( cạnh huyền - góc nhọn )
⇒ EC = DB ( tương ứng )
b) Xét △AEC vuông tại E và △ADB vuông tại D có:
EC = DB ( cmt )
AC = AB ( cmt )
⇒ △AEC = △ADB ( cạnh huyền - cạnh góc vuông )
⇒ AE = AD ( tương ứng )
*) Có AC + CN = AN
AB + BM = AM
Mà AC = AB ( cmt ) ; CN = BM ( gt )
⇒ AN = AM
Xét △ANE và △AMD có:
AN = AM ( cmt )
\(\widehat{BAC}-góc\text{ }chung\)
AE = AD ( cmt )
⇒ △ANE = △AMD (c.g.c)
⇒ NE = MD ( tương ứng )
Xét △ECN và △DBM có:
EC = DB ( cmt )
CN = BM ( gt )
EN = DM ( cmt )
⇒ △ECN = △DBM (c.c.c)
c) Có AE = AD ( cmt )
⇒ △AED cân tại A
\(\Rightarrow\widehat{AED}=\dfrac{180^o-\widehat{EAD}}{2}\)(1)
Có AN = AM ( cmt )
⇒ △AMN cân tại A
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{EAD}}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{AMN}\)
\(\widehat{AED}\text{ và }\widehat{AMN}\) là hai góc đồng vị
\(\Rightarrow ED\text{//}MN\) ( dấu hiệu nhận biết )

6 tháng 2 2018

Chương II : Tam giác

Chương II : Tam giác

Chương II : Tam giác

Từ (1) và (2) => \(\widehat{AMN}=\widehat{AED}\left(=\dfrac{180^o-\widehat{MAN}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

Do đó : \(ED//MN\left(đpcm\right)\)

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó; ΔEBC=ΔDCB

b: Xét ΔECN và ΔDBM có

EC=DB

\(\widehat{ECN}=\widehat{DBM}\)

CN=BM

Do đó: ΔECN=ΔDBM

c: Xét ΔABC có AE/AB=AD/AC

nên DE//BC(1)

Xét ΔAMN có AB/BM=AC/CN

nên BC//NM(2)

Từ (1) và (2) suy ra DE//MN