Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: D và H đối xứng nhau qua AB(gt)
nên AB là đường trung trực của DH
hay AH=AD(1)
Ta có: H và E đối xứng nhau qua AC(gt)
nên AC là đường trung trực của EH
hay AE=AH(2)
Từ (1) và (2) suy ra AD=AE
hay ΔDAE cân tại A
1: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: \(AH=AD\left(1\right)\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: \(AH=AE\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
Lời giải:
a. Vì $H, D$ đối xứng nhau qua $AB$ nên $AB$ là đường trung trực của $DH$
$\Rightarrow AD=AH(1)$
Vì $H,E$ đối xứng qua $AC$ là đường trung trực của $HE$
$\Rightarrow AH=AE(2)$
Từ $(1);(2)\Rightarrow AD=AE$ nên tam giác $ADE$ cân tại $A$
b.
Vì $AB$ là trung trực $DH$ nên:
$AD=AH, MD=MH$
Do đó dễ cm $\triangle ADM=\triangle AHM$ (c.c.c)
$\Rightarrow \widehat{MHA}=\widehat{MDA}=\widehat{EDA}(*)$
Tương tự: $\triangle ANH=\triangle ANE(c.c.c)
$\Rightarrow \widehat{NHA}=\widehat{NEA}=\widehat{DEA}(**)$
Tam giác $ADE$ cân tại $A$ nên $\widehat{EDA}=\widehat{DEA}(***)$
Từ $(*); (**); (***)\Rightarrow \widehat{MHA}=\widehat{NHA}$
Do đó $HA$ là phân giác $\widehat{MHN}$
Làm nốt câu c,d.
c. Sửa thành $BN, CM, AH$ đồng quy
Gọi $T$ là giao $AH, DN$ và $R$ là giao $DN, BC$
Xét tam giác $ADT$ và $NHT$ có:
$\widehat{ATD}=\widehat{NTH}$ (đối đỉnh)
$\widehat{D_2}=\widehat{H_2}=\widehat{H_1}$
$\Rightarrow \triangle ADT\sim \triangle NHT$ (g.g)
$\Rightarrow \frac{AT}{DT}=\frac{NT}{HT}$
$\Rightarrow \triangle ATN\sim \triangle DTH$ (c.g.c)
$\Rightarrow \widehat{N_1}=\widehat{THD}(3)$
Mặt khác:
Vì $\triangle ADT\sim \triangle NHT$
$\Rightarrow \widehat{DAT}=\widehat{HNT}=\widehat{HND}$
Mà $\widehat{DAT}+\widehat{DBH}=180^0$ (do $\widehat{ADB}=\widehat{AHB}=90^0$)
$\Rightarrow \widehat{HND}=\widehat{DAT}=180^0-\widehat{DBH}=\widehat{RBD}$
Xét tam giác $RBD$ và $RNH$ có:
$\widehat{R}$ chung
$\widehat{RBD}=\widehat{HND}=\widehat{RNH}$
$\Rightarrow \triangle RBD\sim \triangle RNH$ (g.g)
$\Rightarrow \frac{RB}{RD}=\frac{RN}{RH}$
$\Rightarrow \triangle RDH\sim \triangle RBN$ (c.g.c)
$\Rightarrow \widehat{RHD}=\widehat{RNB}(4)$
Từ $(3);(4)$ suy ra:
$\widehat{N_1}+\widehat{RNB}=\widehat{THD}+\widehat{RHD}$
$\Leftrightarrow \widehat{ANB}=\widehat{AHB}=90^0$
$\Rightarrow BN\perp AC$
Tương tự $CM\perp AB$
Tam giác $ABC$ có $BN\perp AC, CM\perp AB, AH\perp BC$ nên ba đường này đồng quy (3 đường cao trong tam giác)
d. Đã làm ở phần c.
P/s: Bài toán này nếu làm bằng kiến thức lớp 9 thì khá nhẹ nhàng, nhưng dùng kiến thức lớp 8 thì mình thấy hơi dài.
a,Gọi giao điểm của HD,HE lần lượt là P,Q
Do D đối xứng H qua AB => PD = PH và DH ⊥ AP suy ra:ΔADH cân tại A
=> AD = AH (1)
Tương tự ta có:E đối xứng H qua AC => QH = QE và HE ⊥ AC suy ra: ΔAHE cân tại A=>AH=AE (2)
Từ (1) và (2) suy ra: AD=AE
b,Do AD=AE =>ΔADE cân tại A=> góc ADM=AEN (1)
ta có: QH=QE va HE ⊥AC =>tam giác HEN cân tại N=>góc NEQ =NHQ mà tam giác AHE cân tại A(cmt) =>góc AEN+NEQ=AHN+NHQ =>góc AEN=NHA (2)
Tg tự ta có: PD=PH và DH⊥AB =>ΔMDH cân tại M=>goc MDP=MHP mặt khác tam giác ADH cân tại A(cmt) =>góc ADM + MDP = AHM + MHP => góc ADM=MHA(3)
Từ (1), (2)và (3) =>góc NHA = MHA suy ra:HA là p/giác góc MHN