K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

a)\(\overrightarrow{AB}+\overrightarrow{AN}=\overrightarrow{AM}\)

b)\(\overrightarrow{BA}+\overrightarrow{CN}=2\overrightarrow{BA}\)

c)Có \(\overrightarrow{AB}=\overrightarrow{NC}\)=>bt trở thành \(\overrightarrow{NC}+MC+\overrightarrow{MN}=\overrightarrow{MC}-\overrightarrow{MC}=vt0\)

d)có vt BA+vt BC=vtBN

bt trở thành vtMN-vtMN=vt0

hok tốt!

5 tháng 9 2021

→IB+→IA−→IC−→CM=→0

=>\(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IM}=\overrightarrow{0}\)

=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{IM}\)

Đặt K là trung điểm AB

=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{2IK}\)(T/c trung tuyến)

=>\(\overrightarrow{2IK}=\overrightarrow{IM}\)

=>K,M,I thẳng hàng

Vậy điểm M thuộc đoạn KI sao cho \(\dfrac{\overrightarrow{IK}}{\overrightarrow{IM}}=\dfrac{1}{2}\)

6 tháng 9 2021

 luv u 

5 tháng 9 2021

+)\(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MC}\right|\)

+)\(\left|\overrightarrow{AC}-\overrightarrow{BC}\right|=\left| \overrightarrow{AB}\right|\)

=>MC=AB

=> từ đỉnh C của tam giá ABC lấy điểm M tm MC=AB

15 tháng 10 2021

\(\overrightarrow{AM}-\overrightarrow{AN}=\overrightarrow{NM}\)

\(\overrightarrow{MN}-\overrightarrow{NC}=\overrightarrow{CM}\)

 

Câu 2: 

Vì G là trọng tâm nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

hay \(\overrightarrow{GC}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

=>m=-1; n=-2

NV
10 tháng 12 2021

Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{BG}=\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

I đối xứng B qua G \(\Rightarrow\) \(\overrightarrow{BI}=2\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{BI}=\dfrac{4}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}=-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CA}+\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{CI}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

27 tháng 7 2019
https://i.imgur.com/Ofq4upt.jpg
HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {AC}  + \overrightarrow {BD} = \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {ND}  \\=  \left( {\overrightarrow {AM}  + \overrightarrow {BM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) \\=  \overrightarrow 0  + 2\overrightarrow {MN}  + \overrightarrow 0  = 2\overrightarrow {MN} \) (đpcm)                                                             

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

\(\)\(\overrightarrow {BC}  + \overrightarrow {AD}  = \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {ND} \)

\(\left( {\overrightarrow {BM}  + \overrightarrow {AM} } \right) + \left( {\overrightarrow {MN}  + \overrightarrow {MN} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) = 2\overrightarrow {MN} \)

Mặt khác ta có: \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {MN} \)

Suy ra \(\overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {BC}  + \overrightarrow {AD} \)

Cách 2: 

\(\begin{array}{l}
\overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {AD} \\
\Leftrightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \\
\Leftrightarrow \overrightarrow {DC} = \overrightarrow {DC} (đpcm)
\end{array}\)