Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
a ) Ta có : AB² + AC² = 8² + 6² = 100
BC² = 10² = 100
=> AB² + AC² = BC²
=> Tam giác ABC vuông tại A ( Định lý Py-ta-go đảo )
b ) Áp dụng định lý Py - ta - go vào ΔABH vuông tại H có :
AH² + BH² = AB²
Hay AH² + 6,4² = 8²
<=> AH² = 64 - 40,96 = 23,04
=> AH = 4,8 cm
a) Xét tam giác BAH và tam giác CAH, có:
AH: cạnh chung
AB = AC ( tam giác ABC cân tại A )
góc AHB = góc AHC ( = 90 độ )
-> tam giác BAH = tam giác CAH ( ch-cgv )
-> HB = HC ( 2 cạnh tương ứng )
b) Xét tam giác FBH và tam giác ECH, có:
HB = HC ( cmt )
góc D = góc E ( = 90 độ )
góc B = góc C ( tam giác ABC cân tại A )
-> tam giác FBH = tam giác ECH ( ch-gn )
-> HF = HE ( 2 cạnh tương ứng )
-> tam giác HEF là tam giác cân tại H
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔFHB=ΔEHC(cạnh huyền-góc nhọn)
Suy ra: HF=HE(Hai cạnh tương ứng)
Xét ΔHEF có HF=HE(cmt)
nên ΔHEF cân tại H(Định nghĩa tam giác cân)
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét tam giác AHC vuông tại H có:
AC2 = HC2 + AH2 (định lý Pytago)
Thay số: 7.52 = HC2 + 4.52
<=> HC2 = 7.52 - 4.52
<=> HC2 = 56,25 - 20,25 = 36 = 6 (cm)
Ta có: BC = BH + HC
Thay số: BC = 1,875 + 6 = 7,875 (cm)
Xét tam giác AHB vuông tại H có:
AB2 = BH2 + AH2 (định lý Pytago)
Thay số: AB2 = 1,8752 + 4,5 2
<=> AB2 = \(\dfrac{225}{64}\) + \(\dfrac{81}{4}\) = \(\dfrac{1521}{64}\)
<=> AB = 4,875 (cm)
Chu vi tam giác ABC là: AB + AC + BC = 4,875 + 7,5 + 7,875
= 20,25 (cm)
Xét \(\Delta ABH\) có AH \(\perp\) BH , theo định lí Pytago ta có :
AB2 = AH2 + BH2
=>AB2 = 4.52 + 1.8752
=>AB2 = 23.765625.......
=>AB = 4.875 (cm)
Có AH \(\perp\) BC, theo định lí Pytago ta có :
HC2 = AH2 + AC2
=> HC2 = 76.5
=> HC = 8.746427842 \(\approx\) 8.8 (cm)
=> BC = 10.675 (cm)
Chu vi \(\Delta ABC\) là : AC + BC + AB = 23.05 (cm)