K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

a/

∆ABC vuông tại A, AH, vuông góc BC

=> AB.AH = HB.AC

=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm

11 tháng 4 2020

a ) Ta có : AB² + AC² = 8² + 6² = 100

                           BC² = 10² = 100

=> AB² + AC² = BC²

=> Tam giác ABC vuông tại A ( Định lý Py-ta-go đảo )

b ) Áp dụng định lý Py - ta - go vào ΔABH vuông tại H có :

                                AH² + BH² = AB²

                       Hay   AH² + 6,4² = 8²

                        <=> AH² = 64 - 40,96 = 23,04

                          => AH = 4,8 cm

1 tháng 2 2018

a. 

Xét tam giác ABC :

10=100

8 +  62 = 100

=> 82 + 62 = 102

Suy ra: tam giác ABC là tam giác vuông

Vì: ( Áp dụng đ/l Py-Ta-Go đảo)

b. 

Còn câu b, sao cậu lại bảo tính AC thế, phải là HC chứ!!!!!

12 tháng 5 2017

9 tháng 2 2021

a) Xét tam giác BAH và tam giác CAH, có:

AH: cạnh chung

AB = AC ( tam giác ABC cân tại A )

góc AHB = góc AHC ( = 90 độ )

-> tam giác BAH = tam giác CAH ( ch-cgv )

-> HB = HC ( 2 cạnh tương ứng )

b) Xét tam giác FBH và tam giác ECH, có:

HB = HC ( cmt )

góc D = góc E ( = 90 độ )

góc B = góc C ( tam giác ABC cân tại A )

-> tam giác FBH = tam giác ECH ( ch-gn )

-> HF = HE ( 2 cạnh tương ứng )

-> tam giác HEF là tam giác cân tại H

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔFHB=ΔEHC(cạnh huyền-góc nhọn)

Suy ra: HF=HE(Hai cạnh tương ứng)

Xét ΔHEF có HF=HE(cmt)

nên ΔHEF cân tại H(Định nghĩa tam giác cân)

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

25 tháng 1 2021

Xét tam giác AHC vuông tại H có:

                AC= HC2 + AH2 (định lý Pytago)

Thay số:   7.52 = HC2 + 4.52

<=> HC2 = 7.52 - 4.52

<=> HC2 = 56,25 - 20,25  = 36 = 6 (cm)

Ta có: BC = BH + HC 

Thay số: BC = 1,875 + 6 = 7,875 (cm)

Xét tam giác AHB vuông tại H có:

               AB= BH2 + AH2 (định lý Pytago)

Thay số: AB= 1,875+ 4,5 2

<=> AB\(\dfrac{225}{64}\) + \(\dfrac{81}{4}\) = \(\dfrac{1521}{64}\)

<=> AB = 4,875  (cm)

Chu vi tam giác ABC là: AB + AC + BC =  4,875 + 7,5 + 7,875

                                                               =    20,25  (cm)

 

25 tháng 1 2021

A B C H 7.5 4.5 1.875

Xét \(\Delta ABH\) có AH \(\perp\) BH , theo định lí Pytago ta có :

      AB2    =    AH2  +  BH2 

=>AB2      =   4.52  +  1.8752

=>AB2      =   23.765625.......

=>AB       =  4.875 (cm)

Có AH \(\perp\) BC, theo định lí Pytago ta có :

     HC2  =  AH2 +  AC2

=> HC2  = 76.5

=> HC   = 8.746427842 \(\approx\) 8.8 (cm)

=> BC = 10.675 (cm)

Chu vi \(\Delta ABC\) là : AC   +   BC   +   AB  =  23.05 (cm)