K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

a) Xét hai tam giác ABD và tam giác MNQ:

     AB = MQ (do \(\Delta ABC = \Delta MNP\)).

     \(\widehat {ABD} = \widehat {MNQ}\) (\(\widehat {ABD} = \widehat {MNQ}\)).

     BD = NQ (\(\dfrac{1}{2}BC = \dfrac{1}{2}NP\))

    BC = NP (do \(\Delta ABC = \Delta MNP\)).

Vậy \(\Delta ABD = \Delta MNQ\)(c.g.c) nên AD = MQ ( 2 cạnh tương ứng)

b) Vì \(\Delta ABC = \Delta MNP\) nên BC = NP ( 2 cạnh tương ứng) . Do đó, \(\dfrac{1}{2}BC = \dfrac{1}{2}NP\) hay DC = QP

Vì \(\Delta ABC = \Delta MNP\) nên AC = MP  ( 2 cạnh tương ứng) . Do đó, \(\dfrac{1}{2}AC = \dfrac{1}{2}MP\) hay EC = RP

Xét hai tam giác DEC và tam giác QRP:

DC = QP 

\(\widehat {ECD} = \widehat {RPQ}\)(\(\Delta ABC = \Delta MNP\))

EC = RP 

Vậy \(\Delta DEC = \Delta QRP\)(c.g.c) nên DE = QR ( 2 cạnh tương ứng)

17 tháng 9 2023

Hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM nên \(\Delta ABC = \Delta MNP\)(c.c.c)

Suy ra: \(\widehat {ABI} = \widehat {MNK}\) ( 2 góc tương ứng).

Ta có: I, K lần lượt là trung điểm của BC và NP mà BC = NP, suy ra: \(BI = NK\).

Xét tam giác ABI và tam giác MNK có:

     AB = MN;

     \(\widehat {ABI} = \widehat {MNK}\);

     BI = NK.

Vậy \(\Delta ABI = \Delta MNK\)(c.g.c). Suy ra: AI = MK (2 cạnh tương ứng).

Vậy AI = MK.

17 tháng 9 2023

Ta có: \(\Delta ABC = \Delta MNP\) nên theo tính chất 2 tam giác bằng nhau, ta có:

\(\begin{array}{l}\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\\AB = MN,BC = NP,AC = NP.\end{array}\)

Mà AD và MQ lần lượt là phân giác của góc BAC và NMP nên \(\widehat {BAD} = \widehat {NMQ} = \dfrac{1}{2}\widehat {BAC} = \dfrac{1}{2}\widehat {NMP}\).

Xét hai tam giác ABD và MNQ có:

     \(\widehat {BAD} = \widehat {NMQ}\);

     AB = MN;

     \(\widehat B = \widehat N\).

Vậy \(\Delta ABD = \Delta MNQ\) (g.c.g) nên AD = MQ ( 2 cạnh tương ứng)

16 tháng 11 2015

a) Xét \(\Delta DNA\) và \(\Delta BCN\), có:

DN = NB (gt)

góc N1 = N2 (2 góc đối đỉnh)

AN = CN (N là TĐ của AC)

->\(\Delta DNA=\Delta BCN\) (c.g.c)

-> AD = BC (2 cạnh tương ứng)

-> góc A1 = góc ACB ( 2 góc tương ứng)

Mà góc A1 và góc ACB là 2 góc SLT 

-> AD//BC

Mình chỉ làm được ý a thôi hihi thông cảm

15 tháng 1 2017

A B C D M H K

xét tam giác AMB và tam giác CMD có

AM = MC (gt)

góc AMB = góc CMD ( đối đỉnh )

BM = MD (gt)

do đó tam giác AMB = tam giác CMD (c.g.c)

11 tháng 12 2017

giúp minh câu c nha mình cũng bí bài này